165
Views
1
CrossRef citations to date
0
Altmetric
Section B: Dielectric Properties

Electro-Optical and Dielectric Responses of ZnO Nanoparticles Doped Nematic Liquid Crystal in In-Plane Switching (IPS) Mode

, &
Pages 52-66 | Received 01 Oct 2018, Accepted 12 Aug 2019, Published online: 30 Dec 2019

References

  • L. Dolgov, O. Yaroshchuk, and M. Lebovka, Effect of electro-optical memory in liquid crystals doped with carbon nanotubes, Mol. Cryst. Liq. Cryst. 496 (1), 212 (2008). DOI: 10.1080/15421400802451816.
  • M. Oh-E, and K. Kondo, Electro‐optical characteristics and switching behaviour of the In‐plane switching mode, Appl. Phys. Lett. 67, 3895 (1995).
  • S. H. Lee, S. L. Lee, and H. Y. Kim, Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching, Appl. Phys. Lett. 73 (20), 2881 (1998). DOI: 10.1063/1.122617.
  • S. H. Lee et al., Rubbing-free vertically aligned nematic liquid crystal display controlled by in-plane field, Appl. Phys. Lett. 71 (19), 2851 (1997). DOI: 10.1063/1.120153.
  • H. Eskalen et al., Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles, Acta Phys. Pol. A 127 (3), 756 (2015). DOI: 10.12693/APhysPolA.127.756.
  • R. Manohar et al., Zinc oxide (1% cu) nanoparticle in nematic liquid crystal: Dielectric and electro-optical study, Jpn. J. Appl. Phys. 48 (10), 101501 (2009).DOI: 10.1143/JJAP.48.101501.
  • A. Roy et al., InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters. Appl. Phys. A 124 (3), 273 (2018).DOI: 10.1007/s00339-018-1678-2.
  • M. Oh-e, and K. Kondo, Response mechanism of nematic liquid crystals using the in‐plane switching mode, Appl. Phys. Lett. 69, 623 (1996). DOI: 10.1063/1.117927.
  • A. Takeda et al., A super high-image quality multi-domain vertical alignment LCD by new rubbing-less technology, SID Symposium Digest 29 (1), 1077 (1998).DOI: 10.1889/1.1833672.
  • K. H. Kim et al., Domain divided vertical alignment mode with optimized fringe field effect, presented at the Proceeding 18th, Display research conference, 383. (1998).
  • O. Shinichirou, K. Munehiro, and A. Tadashi, Electro-optical characteristics of twisted nematic liquid crystal device based upon in-plane switching, Mol. Cryst. Liq. Cryst. 410, 311 (2004).
  • R. H. Guan, Y. B. Sun, and W. X. Kang, Rubbing angle effect on in-plane switching liquid crystal displays, Liq. Cryst. 33, 829 (2006).
  • V. Reshetnyak, and O. Shevchuk, Operating voltage in the in plane-switching of nematic liquid crystals, J. Mol. Liq. 92 (1–2), 131 (2001).
  • M. Oh-E, and K. Kondo, The in-plane switching of homogeneously aligned nematic liquid crystals, Liq. Cryst. 22 (4), 379 (1997). DOI: 10.1080/026782997209090.
  • H. K. Shin et al., Vertical alignment nematic liquid crystal cell controlled by double-side in-plane switching with positive dielectric anisotropy liquid crystal, J. Appl. Phys. 104 (8), 084515 (2008)., DOI: 10.1063/1.3005878.
  • B. R. Acharya et al., In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time, Appl. Phys. Lett. 81 (27), 5243 (2002).DOI: 10.1063/1.1532532.
  • R. Lu et al., Transflective in-plane switching liquid crystal display, J. Display Technol. 3 (1), 15 (2007).,
  • T. H. Choi, J. W. Kim, and T. H. Yoon, Fast in-plane switching of negative liquid crystals using crossed patterned electrodes, Jpn. J. Appl. Phys. 53 (8), 081701 (2014). DOI: 10.7567/JJAP.53.081701.
  • D. Andrienko et al., Electrically controlled director slippage over a photosensitive aligning surface; in-plane sliding mode, Liq. Cryst. 27 (3), 365 (2000). DOI: 10.1080/026782900202813.
  • Y. J. Cha et al., In-plane switching mode for liquid crystal displays using a DNA alignment layer, Acs Appl. Mater. Interfaces 7 (24), 13627 (2015). DOI: 10.1021/acsami.5b03321.
  • G. J. Lin et al., Development of tunable electro-optical properties on U-shaped-alignment in-plane switching liquid crystal devices, Opt. Mater. Express 7 (7), 2461 (2017).DOI: 10.1364/OME.7.002461.
  • T. Matsushima et al., New fast response in-plane switching liquid crystal mode, J. Soc. Info. Display 26 (10), 602 (2018). DOI: 10.1002/jsid.708.
  • R. A. Geivandov et al., Study of the vertically aligned in-plane switching liquid crystal mode in microscale periodic electric fields, Beilstein J. Nanotechnol. 9, 11 (2018). DOI: 10.3762/bjnano.9.2.
  • O. Sato et al., Novel in-plane switching liquid crystal display with an extremely high transm-ittance using a well-designed bottlebrush as a zero-azimuth anchoring material, Jpn. J. Appl. Phys. 58 (6), 066503 (2019). DOI: 10.7567/1347-4065/ab1e70.
  • R. A. Soref, Field effects in nematic liquid crystals obtained with interdigital Electrodes, J. Appl. Phys. 45 (12), 5466 (1974). DOI: 10.1063/1.1663263.
  • M. Oh-e, In-plane switching electro-optical effect of nematic liquid crystals, Liq. Cryst. Today 10, 1 (2001).
  • Z. Ge et al., High transmittance in-plane switching liquid crystal displays, J. Display Technol. Technol. 2 (2), 114 (2006). DOI: 10.1109/JDT.2006.874502.
  • Z. Ge et al., High-transmittance in-plane-switching liquid-crystal displays using a positive-dielectric-anisotropy liquid crystal, J. Soc. Inf. Display 14 (11), 1031 (2006).
  • P. Nayek et al., Effect of cadmium sulphide nanorod content on Freedericksz threshold voltage, splay and bend elastic constants in liquid-crystal nanocomposites, J. Phys. D: Appl. Phys. 45 (23), 235303 (2012)., DOI: 10.1088/0022-3727/45/23/235303.
  • P. G. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, 1974).
  • K. Robbie, D. J. Broer, and M. J. Brett, Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure, Nature 399 (6738), 764 (1999). DOI: 10.1038/21612.
  • S. Grollau, N. L. Abbott, and J. J. de Pablo, Dynamic interaction between suspended particles and defects in a nematic liquid crystal, Phys. Rev. E 67 (5), 051703 (2003). DOI: 10.1103/PhysRevE.67.051703.
  • J. Fukuda, M. Yoneya, and H. Yokoyama, Defect structure of a nematic liquid crystal around a spherical particle: Adaptive mesh refinement approach, Phys. Rev. E 65 (4), 041709 (2002). DOI: 10.1103/PhysRevE.65.041709.
  • C. J. Loudet, P. Barois, and P. Poulin, Colloidal ordering from phase separation in a liquid-crystalline continuous phase, Nature 407 (6804), 611 (2000). DOI: 10.1038/35036539.
  • D. Andrienko et al., Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host, Phys. Rev. E 65 (4), 041702 (2002)., DOI: 10.1103/PhysRevE.65.041702.
  • S. J. Woltman, G. D. Jay, and G. P. Crawford, Liquid-crystal materials find a new order in biomedical applications, Nature Mater. 6 (12), 929 (2007). DOI: 10.1038/nmat2010.
  • P. K. Tripathi et al., Study on dielectric and optical properties of ZnO doped nematic liquid crystal in low frequency region, Chem. Rapid Commun. 1, 20 (2013).
  • P. C. Wu, S. Y. Yang, and W. Lee, Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles, J. Mol. Liq. 218, 150 (2016). DOI: 10.1016/j.molliq.2016.02.029.
  • S. Tomylko et al., Dielectric properties of nematic liquid crystal modified with diamond nanoparticles, Ukr. J. Phys. 5, 239 (2012).
  • U. B. Singh et al., Enhanced electro-optical properties of a nematic liquid crystals in presence of BaTiO3 nanoparticles, Liq. Cryst. 41 (7), 953 (2014).DOI: 10.1080/02678292.2014.894209.
  • H. Jiang, and N. Toshima, Low driving voltage of a liquid crystal device fabricated from 4′ -pentyl- 4-biphenylcarbonitrile doped with environmentally friendly ZnO nanoparticles, Chem. Lett. 38 (6), 566 (2009). DOI: 10.1246/cl.2009.566.
  • Y. Tao, and Y. H. Tam, Dynamics of ZnO nanowires immersed in in-plane switching liquid crystal cells, Appl. Phys. Lett. 103 (20), 203102 (2013). DOI: 10.1063/1.4829998.
  • S. Y. Jeon et al., Effects of carbon nanotubes on electro-optical characteristics of liquid crystal cell driven by in-plane field, Appl. Phys. Lett. 90 (12), 121901 (2007).DOI: 10.1063/1.2714311.
  • K. Pal et al., Smart in-plane switching of nanowires embedded liquid crystal matrix, Org. Electron. 42, 256 (2017). DOI: 10.1016/j.orgel.2016.12.049.
  • M. J. Escuti et al., Enhanced dynamic response of the in-plane switching liquid crystal display mode through polymer stabilization, Appl. Phys. Lett. 75 (21), 3264 (1999)., DOI: 10.1063/1.125319.
  • R. Basu, and S. A. Shalov, Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices, Phys. Rev. E 96 (1), 012702 (2017). DOI: 10.1103/PhysRevE.96.012702.
  • T. J. Chen et al., Optimized electro-optical properties of polymer-stabilized vertical-aligned liquid crystal displays driven by an in-plane field, Displays 37, 94 (2015). DOI: 10.1016/j.displa.2014.10.004.
  • M. OH-E, In-plane switching electro-optical effect of nematic liquid crystals, Liq. Cryst. Today 10 (2), 6 (2001). DOI: 10.1080/14645180110074800.
  • P. Yaduvanshi et al., Effect of silver nanoparticles on frequency and temperature-dependent electrical parameters of a discotic liquid crystalline material, Liq.Cryst. 42 (10), 1478 (2015)., DOI: 10.1080/02678292.2015.1061145.
  • Khushboo, P. Sharma, P. Malik, and K. K. Raina, Textural, thermal, optical and electrical properties of iron nanoparticles dispersed 4′-(hexyloxy)-4-biphenylcarbonitrile liquid crystal mixture,Liq. Cryst. 44, 1717 (2017).
  • M. Koneracka et al., Study of magnetic fredericksz transition in ferronematics, J. Magn. Magn. Mater. 140, 1455 (1995). DOI: 10.1016/0304-8853(94)01244-X.
  • K. S. Cole, and R. H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys. 9 (4), 341 (1941). DOI: 10.1063/1.1750906.
  • F. Gouda, K. Skarp, and S. T. Lagerwall, Dielectric studies of the soft mode and goldstone mode in ferroelectric liquid crystals, Ferro 113 (1), 165 (1991). DOI: 10.1080/00150199108014063.
  • A. Koval’chuk, L. Dolgov, and O. Yaroshchuk, Dielectric studies of dispersions of carbon nanotubes in liquid crystals 5CB, Semicond. Phys. Quantum Electron. Optoelectron. 11, 337 (2008).
  • S. Urban et al., Dielectric studies of 60CB/8OCB mixtures with the nematic-smectic A-nematic re-entrant phase sequence, Liq. Cryst. 27 (12), 1675 (2000)., DOI: 10.1080/026782900750037257.
  • S. Mohyeddine, M. B. Pandey, and D. Revannasiddaiah, Dielectric investigations in the nematic and hexatic smectic B phases of 4-hexyl-4′-[2-(4-isothiocyanatophenyl)ethyl]-1,1′-biphenyl, Phase Transitions 82 (1), 11 (2009). DOI: 10.1080/01411590802249236.
  • P. Kumar et al., Nanodoping: A route for enhancing electro-optic performance of bent core nematic system, J. Phys Condens. Matter 30, 095101 (2018). DOI: 10.1088/1361-648X/aaa801.
  • A. K. George et al., Study of dipole dynamics and pre-transitional effects at isotropic to nematic phase transition by low-frequency dielectric relaxation measurements, Phase Transit. 76 (12), 1037 (2003). DOI: 10.1080/0141159031000114865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.