163
Views
0
CrossRef citations to date
0
Altmetric
Section F: Other Emerging Areas

Structural, Mechanical and Dielectric Properties of Microwave-Assisted High-Energy Ball Milling Synthesis of Hydroxyapatite

, , , , , , , , & show all
Pages 186-193 | Received 01 Oct 2018, Accepted 12 Aug 2019, Published online: 09 Feb 2020

References

  • X. Feng, Chemical and biochemical basis of cell-bone matrix interaction in health and disease. Curr. Chem. Biol. 3, 189 (2009). DOI: 10.2174/187231309788166398.
  • B. Viswanath et al., Synthesis, sintering and microstructural characterization of nanocrystalline hydroxyapatite composites. Mater. Res. Soc. 845, 309 (2005).
  • A. S. Fomin et al., Nanocrystalline hydroxyapatite ceramics produced by low-temperature sintering after high-pressure treatment. Chem. Technol. 418, 352 (2008).
  • A. K. Nayak, Hydroxyapatite synthesis methodologies: an overview. Int. J. ChemTech Res. 2, 903 (2010).
  • S. Bose et al., Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties. Acta Biomater. 6 (9), 3782 (2010). DOI: 10.1016/j.actbio.2010.03.016.
  • M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloys Compd. 494 (1–2), 175 (2010). DOI: 10.1016/j.jallcom.2010.01.068.
  • A. Z. O. Arawi, R. Ramli, and M. K. Talari, Study of sintering temperature for nano-hydroxyapatite with addition of titanium. Adv. Mater. Res. 538–541, 2392 (2012). DOI: 10.4028/www.scientific.net/AMR.538-541.2392.
  • Z. Evis and T. J. Webster, Nanosize hydroxyapatite: doping with various ions. Adv. Appl. Ceram. 110 (5), 311 (2011). DOI: 10.1179/1743676110Y.0000000005.
  • S. Suresh, Theoretical studies of solid state dielectric parameters of hydroxyapatite. Mater. Phys. Mech. 14, 145 (2012).
  • N. A. Aal et al., Synthesis, characterization and electrical properties of hydroxyapatite nanoparticles from utilization of biowaste eggshells. Biomater. Res. 15, 52 (2011).
  • M. Prakasam et al., Hydroxyapatite-barium titanate piezocomposites with enhanced electrical properties. J. Am. Ceram. Soc. 100 (6), 2621 (2017). DOI: 10.1111/jace.14801.
  • N. Horiuchi et al., Dielectric relaxation in monoclinic hydroxyapatite: observation of hydroxide ion dipoles. J. Appl. Phys. 119 (8), 084903 (2016). DOI: 10.1063/1.4942236.
  • B. Samanta, P. Kumar, and C. Prakash, Effect of sintering temperature and Cu-rich secondary phase on dielectric properties of microwave processed CaCu3Ti4O12 ceramics. Ferroelectrics 517 (1), 46 (2017). DOI: 10.1080/00150193.2017.1369829.
  • A. D. Bona et al., Flexural and diametral tensile strength of composite resins. Braz. Oral. Res. 22, 84 (2008). DOI: 10.1590/S1806-83242008000100015.
  • P. Zhang, S. X. Li, and Z. F. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62 (2011). DOI: 10.1016/j.msea.2011.08.061.
  • T. P. Hoepfner and E. D. Case, The porosity dependence of the dielectric constant for sintered hydroxyapatite. J. Biomed. Mater. Res. 60, 643 (2002). DOI: 10.1002/jbm.10131.
  • N. Thangamani, K. Chinnakali, and F. D. Gnanam, The effect of powder processing on densification, microstructure and mechanical properties of hydroxyapatite. Ceram. Int. 28 (4), 355 (2002). DOI: 10.1016/S0272-8842(01)00102-X.
  • P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering (Springer, Berlin, 2008).
  • A. Leriche et al., Comparison of conventional and microwave sintering of bioceramics. Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials: A Collection of Papers Presented at the 38th International Conference on Advanced Ceramics and Composites, Daytona Beach, FL, USA, 27–31 Jan. 2014, Volume 35, 2015.
  • J. Song et al., Mechanical properties of hydroxyapatite ceramics sintered from powders with different morphologies. J. Mater. Sci. Eng. A 528 (16–17), 5421 (2011). DOI: 10.1016/j.msea.2011.03.078.
  • O. Kaygili et al., Dielectric properties of Fe doped hydroxyapatite prepared by sol-gel method. Ceram. Int. 40 (7), 9395 (2014). DOI: 10.1016/j.ceramint.2014.02.009.
  • C. Sudheendra and T. S. Rao, Electrical and dielectric properties of aluminium titanate. J. Sci. Eng. Res. 2, 2229 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.