525
Views
1
CrossRef citations to date
0
Altmetric
Articles

Core–Shell Upconversion Nanoparticle@Metal–Organic Framework Nanoprobes for Targeting and Drug Delivery

, , , , &
Pages 66-78 | Received 19 Sep 2019, Accepted 03 Feb 2020, Published online: 07 Apr 2020

References

  • M. X. Wu, and Y. W. Yang, Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy, Adv. Mater. 29 (2017).
  • F. Wang, R. Deng, and X. Liu, Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9 (7), 1634 (2014). DOI: 10.1038/nprot.2014.111.
  • H. Feng et al., Preparation and application of fluorescence dendritic macromolecular nanoparticles. Integr. Ferroelectr. 197 (1), 99 (2019). DOI: 10.1080/10584587.2019.1592086.
  • G. Tian et al., Red-Emitting Upconverting Nanoparticles for Photodynamic Therapy in Cancer Cells Under Near-Infrared Excitation. Small 9 (11), 1929 (2013). DOI: 10.1002/smll.201201437.
  • X. Zhang et al., Fluorescent carbon dots grafted hyperbranched glycidyl ether. Integr. Ferroelectr. 199 (1), 46 (2019). DOI: 10.1080/10584587.2019.1592596.
  • L. Zhou et al., A near-infrared triggered intracellular pH regulative PAMAM/O-nitrobenzaldehyde coated UCNPs for cancer therapy. Integr. Ferroelectr. 199 (1), 85 (2019). DOI: 10.1080/10584587.2019.1592601.
  • F. Jia et al., Surface modification of NaYF 4:Yb,Er nanomaterials. Integr. Ferroelectr. 199 (1), 138 (2019). DOI: 10.1080/10584587.2019.1592607.
  • F. Jia et al., Synthesis of OA-NaYF 4 :Yb,Er and its cytotoxicity. Integr. Ferroelectr. 199 (1), 143 (2019). DOI: 10.1080/10584587.2019.1592608.
  • J. C. Boyer et al., Synthesis of colloidal upconverting NaYF 4 nanocrystals doped with Er 3+, Yb 3+ and Tm 3+, Yb 3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 128 (23), 7444 (2006). DOI: 10.1021/ja061848b.
  • Z. Hou et al., Up-conversion luminescent and porous NaYF4:Yb3+, Er3+@SiO2 nanocomposite fibers for anti-cancer drug delivery and cell imaging. Adv. Funct. Mater. 22 (13), 2713 (2012). DOI: 10.1002/adfm.201200082.
  • H. Q. Wang et al., Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23 (22-23), 2675 (2011). DOI: 10.1002/adma.201100511.
  • F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104 (1), 139 (2004). DOI: 10.1021/cr020357g.
  • M. Haase, and H. Schäfer, Upconverting nanoparticles. Angew. Chem. Int. Ed. 50 (26), 5808 (2011). DOI: 10.1002/anie.201005159.
  • R. Lv et al., In situ growth strategy to integrate up-conversion nanoparticles with ultrasmall CuS for photothermal theranostics. ACS Nano 11 (1), 1064 (2017). DOI: 10.1021/acsnano.6b07990.
  • L. Tu et al., Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 44 (6), 1331 (2015). DOI: 10.1039/C4CS00168K.
  • Q. Zhan et al., Using 915 nm laser excited Tm 3+ /Er 3+ /Ho 3+ -doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano. 5 (5), 3744 (2011). DOI: 10.1021/nn200110j.
  • P. Gerner et al., Near-infrared to visible photon upconversion in Mn2+ and Yb3+ containing materials. J. Alloys Compd. 380 (1-2), 39 (2004). DOI: 10.1016/j.jallcom.2004.03.017.
  • A. Benayas et al., Nd:YAG near-infrared luminescent nanothermometers. Adv. Optical Mater. 3 (5), 687 (2015). DOI: 10.1002/adom.201400484.
  • T. Kushida, H. M. Marcos, and J. M. Geusic, Laser transition cross section and fluorescence branching ratio for Nd3+ in yttrium aluminum garnet. Phys. Rev. 167 (2), 289 (1968). DOI: 10.1103/PhysRev.167.289.
  • X. Xie et al., Mechanistic investigation of photon upconversion in Nd 3+ -sensitized core–shell nanoparticles. J. Am. Chem. Soc. 135 (34), 12608 (2013). DOI: 10.1021/ja4075002.
  • J. Xu et al., Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. ACS Nano 11 (4), 4133 (2017). DOI: 10.1021/acsnano.7b00944.
  • M. J. Weber, Optical properties of Yb3+ and Nd3+ - Yb3+ energy transfer in YAl O3. Phys. Rev. B. 4 (9), 3153 (1971). DOI: 10.1103/PhysRevB.4.3153.
  • S. Z. Lia, and F. W. Huo, Metal-organic framework composites: from fundamentals to applications. Nanoscale 7, 7482–7501 (2015).
  • H. Furukawa et al., The chemistry and applications of metal-organic frameworks. Science 341 (6149), 1230444 (2013). DOI: 10.1126/science.1230444.
  • Y. Wang et al., Controllable syntheses of porous metal-organic frameworks: Encapsulation of Ln III cations for tunable luminescence and small drug molecules for efficient delivery. Chem. Eur. J. 19 (43), 14591 (2013). DOI: 10.1002/chem.201300144.
  • E. D. Bloch et al., Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335 (6076), 1606 (2012). DOI: 10.1126/science.1217544.
  • M. Yoon, R. Srirambalaji, and K. Kim, Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112 (2), 1196 (2012). DOI: 10.1021/cr2003147.
  • Y. Ma et al., Heterogeneous nano metal–organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells. Anal. Chem. 86 (22), 11459 (2014). DOI: 10.1021/ac503622n.
  • J. Zhuang et al., Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8 (3), 2812 (2014). − DOI: 10.1021/nn406590q.
  • C. Wang, D. Liu, and W. Lin, Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 135 (36), 13222 (2013). DOI: 10.1021/ja308229p.
  • J. Liu et al., Multifunctional metal-organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy. ACS Appl. Mater. Interfaces 9 (3), 2150 (2017). DOI: 10.1021/acsami.6b14446.
  • P. Horcajada et al., Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed. 45 (36), 5974 (2006). DOI: 10.1002/anie.200601878.
  • P. Horcajada et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 9 (2), 172 (2010). DOI: 10.1038/nmat2608.
  • P. Horcajada et al., Flexible porous metal-organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130 (21), 6774 (2008). DOI: 10.1021/ja710973k.
  • Q. Hu et al., A low cytotoxic cationic metal–organic framework carrier for controllable drug release. J. Med. Chem. 57 (13), 5679 (2014). DOI: 10.1021/jm5004107.
  • T. Kundu et al., Mechanical downsizing of a gadolinium(III)-based metal-organic framework for anticancer drug delivery. Chem. Eur. J. 20 (33), 10514 (2014). DOI: 10.1002/chem.201402244.
  • A. R. Chowdhuri et al., Synthesis of multifunctional upconversion NMOFs for targeted antitumor drug delivery and imaging in triple negative breast cancer cells. Chem. Eng. J. 319, 200 (2017). DOI: 10.1016/j.cej.2017.03.008.
  • X. Zhu et al., Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chem. Commun. 50 (63), 8779 (2014). DOI: 10.1039/C4CC02570A.
  • C. Zhang, L. Ai, and J. Jiang, Solvothermal synthesis of MIL–53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J. Mater. Chem. A. 3 (6), 3074 (2015). DOI: 10.1039/C4TA04622F.
  • S. K. Sriraman et al., Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol. Pharm. 13 (2), 428 (2016). DOI: 10.1021/acs.molpharmaceut.5b00663.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.