Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 212, 2020 - Issue 1
178
Views
0
CrossRef citations to date
0
Altmetric
Articles

Tunable Electromagnetically Induced Transparency in Asymmetric Graphene-Based Metamaterial at Terahertz Region

, , , &
Pages 1-8 | Received 24 Sep 2019, Accepted 03 Feb 2020, Published online: 11 Nov 2020

References

  • K. Boller, A. Imamolu, and S. E. Harris, Normal modes for electromagnetically induced transparency, Phys. Rev. Lett. 66 (20), 2593 (1991). DOI: 10.1103/PhysRevLett.66.2593.
  • M. D. Lukin, and A. Imamoglu, Controlling photons using electromagnetically induced transparency, Nature 413, 273 (2001). DOI: 10.1038/35095000.
  • V. Kravtsov, J. M. Atkin and M. B. Raschke, Group delay and dispersion in adiabatic plasmonic nanofocusing, Opt. Lett. 38 (8), 1322–1324 (2013). DOI: 10.1364/OL.38.001322.
  • J. Q. Gu et al., Active control of electromagnetically induced transparency analogue in terahertz metamaterials, Nat. Commun. 3, 1151 (2012).
  • X. Duan et al., Polarization-insensitive wide-angleplasmonically induced transparency planarmetamaterials, Appl. Phys. Lett. 101, 143105 (2012). DOI: 10.1063/1.4756944.
  • X. Liu et al., Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode, Appl. Phys. Lett. 100, 131101 (2012). DOI: 10.1063/1.3696306.
  • A. Vakil and N. Engheta, Transformation optics using graphene, Science 332 (6035), 1291–1294 (2011). DOI: 10.1126/science.1202691.
  • C. Y. Zhang, et al., Active control of electromagnetically induced transparency based on terahertz hybrid metal-graphene metamaterials for slow light applications, Optik 200, 163398 (2020). DOI: 10.1016/j.ijleo.2019.163398.
  • O. Balci et al., Electrically switchable metadevices via graphene, Sci. Adv. 4, eaao1749 (2018). DOI: 10.1126/sciadv.aao1749.
  • C. Shu et al., Dynamically tunable implementation of electromagnetically induced transparency with two coupling graphene-nanostrips in terahertz region, Optics Commun 411, 48 (2018). DOI: 10.1016/j.optcom.2017.10.069.
  • B. Vasic et al., Tunable metamaterials based on split ring resonators and doped graphene. Appl. Phys. Lett. 103, 011102 (2013).
  • X. B. Zheng et al., Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules, Optical Mater. Express 7 (3), 1035–1047 (2017) DOI: 10.1364/OME.7.001035.
  • E. Prodan et al., A hybridization model for the plasmon response of complex nanostructures, Science 302, 419–22 (2003). DOI: 10.1126/science.1089171.
  • X. Y. He et al., Terahertz tunable graphene Fano resonance, Nanotechnology, 27, 485202 (2016). DOI: 10.1088/0957-4484/27/48/485202.
  • D. Rodrigo, et al., Mid-infrared plasmonic biosensing with graphene, Science 349, 165 (2015). DOI: 10.1126/science.aab2051.
  • J. Y. Ou et al., An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared, Nat. Nanotechnol. 8, 252–255 (2013). DOI: 10.1038/nnano.2013.25.
  • X. Y. He, Tunable terahertz graphenemetamaterials, Carbon 82, 229–237 (2015). DOI: 10.1016/j.carbon.2014.10.066.
  • T. Zentgraf et al., Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems, Phys. Rev. B 80 (19), 195415 (2009). DOI: 10.1103/PhysRevB.80.195415.
  • L. Zhang et al., Large group delay in a microwave metamaterial analog of electromagnetically induced transparency, Appl. Phys. Lett. 97 (24), 241904 (2010). DOI: 10.1063/1.3525925.
  • Z. Y. Zhao et al., Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial, Optical Mater. Express 6, 2190 (2016). DOI: 10.1364/OME.6.002190.
  • T. Baba, Slow light in photonic crystals, Nat. Photonics 2 (8), 465–473 (2008). DOI: 10.1038/nphoton.2008.146.
  • X. G. Yin et al., Appl.Tailoring electromagnetically induced transparency for terahertz metamaterials: From diatomic to triatomic stru. Phys. Lett. 103 (2), 021115 (2013). DOI: 10.1063/1.4813553.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.