Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 213, 2021 - Issue 1
98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation of Biochar and Its Metal Complexes and Study on Their Lead Adsorption Properties

, , , &
Pages 53-66 | Received 23 Sep 2019, Accepted 03 Feb 2020, Published online: 28 Feb 2021

References

  • Y. Gong et al., Highly porous graphitic biochar as advanced electrode materials for supercapacitors. Green Chem. 19 (17), 4132 (2017). DOI: 10.1039/C7GC01681F.
  • X. Zhang et al., Antimony/porous biochar nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 12 (1), 116 (2017). DOI: 10.1002/asia.201601398.
  • D. Yuan et al., Recyclable biochar@ SiO2@ MnO2 aerogel with hierarchical structures for fast and selective oil-water separation. Chem. Eng. J. 351, 622 (2018). DOI: 10.1016/j.cej.2018.06.132.
  • C. Wang et al., Controlling pseudographtic domain dimension of dandelion derived biochar for excellent sodium-ion storage. J. Power Sources 358, 85 (2017). DOI: 10.1016/j.jpowsour.2017.05.011.
  • S. M. Hickey et al., Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: a remote sensing height-biomass-carbon approach. Estuarine. Coastal Shelf Sci. 200, 194 (2018). DOI: 10.1016/j.ecss.2017.11.004.
  • J. Wang et al., Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5 (6), 2411 (2017). DOI: 10.1039/C6TA08742F.
  • L. Deng et al., The enhancement of electrochemical capacitance of biomass-carbon by pyrolysis of extracted nanofibers. Electrochim. Acta 228, 398 (2017). DOI: 10.1016/j.electacta.2017.01.099.
  • Y.-J. Yuan et al., Metal-complex chromophores for solar hydrogen generation. Chem. Soc. Rev. 46 (3), 603 (2017). DOI: 10.1039/C6CS00436A.
  • R. Zeng et al., Hydrogenation and hydrosilylation of nitrous oxide homogeneously catalyzed by a metal complex. J. Am. Chem. Soc. 139 (16), 5720 (2017). DOI: 10.1021/jacs.7b02124.
  • K. T. Mahmudov et al., Noncovalent interactions in metal complex catalysis. Coord. Chem. Rev. 387, 32 (2019). DOI: 10.1016/j.ccr.2019.02.011.
  • T. M. Suzuki et al., Enhancement of CO2 reduction activity under visible light irradiation over Zn-based metal sulfides by combination with Ru-complex catalysts. Appl. Catal. B 224, 572 (2018). DOI: 10.1016/j.apcatb.2017.10.053.
  • Z. Bao et al., Fine tuning and specific binding sites with a porous hydrogen-bonded metal-complex framework for gas selective separations. J. Am. Chem. Soc. 140 (13), 4596 (2018). DOI: 10.1021/jacs.7b13706.
  • A. Gualandi, C. M. Wilson, and P. G. Cozzi, Stereoselective reactions with chiral Schiff base metal complexes. CHIMIA (Aarau) 71 (9), 562 (2017). DOI: 10.2533/chimia.2017.562.
  • P. C. Ford, Metal complex strategies for photo-uncaging the small molecule bioregulators nitric oxide and carbon monoxide. Coord. Chem. Rev. 376, 548 (2018). DOI: 10.1016/j.ccr.2018.07.018.
  • M. Eguchi, Inert layered silicate improves the electrochemical responses of a metal complex polymer. ACS Appl. Mater. Interfaces 40, 35498 (2017). DOI: 10.1021/acsami.7b13311.
  • K. Kim et al., Transition metal complex directed synthesis of porous cationic polymers for efficient CO2 capture and conversion. Polymer 126, 296 (2017). DOI: 10.1016/j.polymer.2017.05.066.
  • T. Kavitha et al., Thermal decomposition of metal complex precursor as route to the synthesis of Co3O4 nanoparticles: antibacterial activity and mechanism. J. Alloys Compd. 704, 296 (2017). DOI: 10.1016/j.jallcom.2017.01.306.
  • H. Braunschweig, Transition‐metal π‐ligation of a tetrahalodiborane. Angew. Chem. Int. Ed. Edition 2, 412 (2018). DOI: 10.1002/anie.201709515.
  • X. Li, Y. W. Naguib, and Z. Cui, In vivo distribution of zoledronic acid in a bisphosphonate-metal complex-based nanoparticle formulation synthesized by a reverse microemulsion method. Int. J. Pharm. 526 (1-2), 69 (2017). DOI: 10.1016/j.ijpharm.2017.04.053.
  • S. Rashid et al., Preparation and properties of chitosan–metal complex: some factors influencing the adsorption capacity for dyes in aqueous solution. J. Environ. Sci. 66, 301 (2018). DOI: 10.1016/j.jes.2017.04.033.
  • X. Wu et al., Preparation of noble metal/polymer nanocomposites via in situ polymerization and metal complex reduction. Mater. Chem. Phys. 222, 300 (2019). DOI: 10.1016/j.matchemphys.2018.10.031.
  • Y. Zheng et al., Octahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysis. J. Am. Chem. Soc. 139 (12), 4322 (2017). DOI: 10.1021/jacs.7b01098.
  • Y. Wu et al., Novel synthesis of Cu‐Schiff base complex@ metal‐organic framework MIL‐101 via a mild method: a comparative study for rapid catalytic effects. ChemistryOpen 8 (3), 333 (2019). DOI: 10.1002/open.201900032.
  • Q. Feng et al., Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector. Sep. Purif. Technol. 178, 193 (2017). DOI: 10.1016/j.seppur.2017.01.053.
  • S. Tabesh, F. Davar, and M. R. Loghman-Estarki, Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions. J. Alloys Compd. 730, 441 (2018). DOI: 10.1016/j.jallcom.2017.09.246.
  • M. Basu, A. K. Guha, and L. Ray, Adsorption of lead on cucumber peel. J. Cleaner Prod. 151, 603 (2017). DOI: 10.1016/j.jclepro.2017.03.028.
  • Y. Zhang et al., Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Appl. Surf. Sci. 427, 147 (2018). DOI: 10.1016/j.apsusc.2017.07.237.
  • S. Mohan et al., Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: isotherm, kinetic and thermodynamic modeling of adsorption. J. Environ. Chem. Eng. 5 (3), 2259 (2017). DOI: 10.1016/j.jece.2017.03.031.
  • A. Bhattacharyya et al., Development of an auto-phase separable and reusable graphene oxide-potato starch based cross-linked bio-composite adsorbent for removal of methylene blue dye. Int. J. Biol. Macromol. 116, 1037 (2018). DOI: 10.1016/j.ijbiomac.2018.05.069.
  • A. C. N. de Azevedo et al., Starch/rice husk ash based superabsorbent composite: high methylene blue removal efficiency. Iran. Polym. J. 26 (2), 93 (2017). DOI: 10.1007/s13726-016-0500-2.
  • O. A. Hilders and N. Zambrano, Microstructural evolution and mechanical property—fractal behavior relations of an aged super duplex stainless steel. Acta Microsc. 27 (2), 83 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.