Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 211, 2020 - Issue 1
310
Views
0
CrossRef citations to date
0
Altmetric
Articles

A Novel Elastomer of Starch-Polyvinyl Alcohol Double-Networks for Real-Time of Monitoring Strain, Temperature and Humidity

, , , , &
Pages 60-68 | Received 27 Sep 2019, Accepted 12 Feb 2020, Published online: 12 Oct 2020

References

  • T. Q. Trung et al., An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics, Adv. Mater. 28 (3), 502 (2016). DOI: 10.1002/adma.201504441.
  • S. Y. Hong et al., Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin, Adv. Mater. 28 (5), 930 (2016). DOI: 10.1002/adma.201504659.
  • T. Q. Trung et al., Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics, Nano Res. 10 (6), 2021 (2017). DOI: 10.1007/s12274-016-1389-y.
  • G. Zhou et al. , Highly sensitive wearable textile-based humidity sensor made of high-strength, single-walled carbon Nanotube/Poly(vinyl alcohol) filaments, ACS Appl. Mater. Interfaces 9 (5), 4788 (2017). DOI: 10.1021/acsami.6b12448.
  • H. Liu et al., A carbohydrate-based elastomer with tunable properties for sensing applications, MRS Adv. 3 (29), 1653 (2018). DOI: 10.1557/adv.2018.95.
  • Y. Wang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring, Adv. Funct. Mater. 24 (29), 4666 (2014). DOI: 10.1002/adfm.201400379.
  • M. Amjadi et al., Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: a review, Adv. Funct. Mater. 26 (11), 1678 (2016). DOI: 10.1002/adfm.201504755.
  • K. Chen et al., Printed carbon nanotube electronics and sensor systems, Adv. Mater. 28 (22), 4397 (2016). DOI: 10.1002/adma.201504958.
  • Z. He et al., Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors, Nanoscale. 11 (13), 5884 (2019). DOI: 10.1039/C9NR01005J.
  • Y. Lu et al., Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors, Biosens. Bioelectron. 123 167–177 (2018). DOI: 10.1016/j.bios.2018.08.037
  • S. M. Nalawade, S. S. Harnol, and H. V. Thakur, Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber, IEEE Sensors J. 12 (8), 2614 (2012). DOI: 10.1109/JSEN.2012.2198809.
  • S. Rosset, and H. R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators, Appl. Phys. A 110 (2), 281 (2013). DOI: 10.1007/s00339-012-7402-8.
  • R. Pelrine et al., High-speed electrically actuated elastomers with strain greater than 100%, Science 287 (5454), 836 (2000). DOI: 10.1126/science.287.5454.836.
  • Y. Zhang et al., Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage, Soft Matter. 9 (33), 8062 (2013). DOI: 10.1039/c3sm51360b.
  • D. H. Kim et al., Epidermal Electronics, World Neurosurg. 76, 485 (2011). DOI: 10.1126/science.1206157.
  • J. Zang et al., Multifunctionality and control of the crumpling and unfolding of large-area graphene, Nat. Mater. 12 (4), 321 (2013). DOI: 10.1038/nmat3542.
  • L. Hu et al., Highly stretchable, conductive, and transparent nanotube thin films, Appl. Phys. Lett. 94 (16), 161108 (2009). DOI: 10.1063/1.3114463.
  • D. J. Cohen et al., A highly elastic, capacitive strain gauge based on percolating nanotube networks, Nano Lett. 12 (4), 1821 (2012). DOI: 10.1021/nl204052z.
  • M. Ramuz et al. , Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics, Adv. Mater. 24 (24), 3223 (2012). DOI: 10.1002/adma.201200523.
  • S. Shian, R. M. Diebold, and D. R. Clarke, Tunable lenses using transparent dielectric elastomer actuators, Opt. Express 21 (7), 8669 (2013). DOI: 10.1364/OE.21.008669.
  • D. M. Drotlef et al., Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors, Adv. Mater. 29 (28), 1701353 (2017). DOI: 10.1002/adma.201701353.
  • X. Lin et al., A viscoelastic adhesive epicardial patch for treating myocardial infarction, Nat. Biomed. Eng. 3 (8), 632 (2019). DOI: 10.1038/s41551-019-0380-9.
  • H. Liu et al., A flexible conductive hybrid elastomer for high-precision stress/strain and humidity detection, J. Mater. Sci. Technol. 35 (1), 176 (2019). DOI:CNKI: SUN: CLKJ.0.2019-01-024 DOI: 10.1016/j.jmst.2018.09.006.
  • S. Shi et al., Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties, Polymer 111, 168 (2017). DOI: 10.1016/j.polymer.2017.01.051.
  • Y. Wang et al., Study of skin stretching based on running sports status, J. Text Res. 34, 115 (2013). DOI: 10.2166/wst.2013.334.
  • W. Du et al., Structure and properties of Starch/Poly (vinyl alcohol) film modificated by different inorganic salts, ChemistrySelect 4 (2), 600 (2019). DOI: 10.1002/slct.201803671.
  • Y. N. Cheung et al., A novel fluidic strain sensor for large strain measurement, Sens. Actuators A Phys. 147 (2), 401 (2008). DOI: 10.1016/j.sna.2008.05.013.
  • J. Fastier-Wooller et al., Low-cost multifunctional ionic liquid pressure and temperature sensor, International Conference on Sustainable Design and Manufacturing, Springer, 184, 2018. DOI:10.1007/978-3-030-04290-5_19
  • T. Muntasir, and S. Chaudhary, Defects in solution-processed dithienylsilole-based small-molecule photovoltaic thin-films, J. Appl. Phys 119 (2), 025501 (2016). DOI: 10.1063/1.4939827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.