Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 211, 2020 - Issue 1
257
Views
1
CrossRef citations to date
0
Altmetric
Articles

Modeling and Design of a Piezoelectric Nonlinear Aeroelastic Energy Harvester

ORCID Icon, , &
Pages 132-151 | Received 04 Feb 2020, Accepted 12 Jul 2020, Published online: 12 Oct 2020

References

  • P. Gaudenzi, Smart Structures: physical behaviour, mathematical modelling and applications (John Wiley & Sons, Hoboken, NJ, 2009).
  • J. Wang et al., High-performance piezoelectric wind energy harvester with Y-shaped attachments, Energy Convers. Manag. 181, 645 (2019). DOI: 10.1016/j.enconman.2018.12.034.
  • H. Elahi et al., Effects of variable resistance on smart structures of cubic reconnaissance satellites in various thermal and frequency shocking conditions, J. Mech. Sci. Technol. 31 (9), 4151 (2017). DOI: 10.1007/s12206-017-0811-z.
  • H. Elahi et al., Piezoelectric thermo electromechanical energy harvester for reconnaissance satellite structure, Microsyst. Technol. 25 (2), 665 (2019). DOI: 10.1007/s00542-018-3994-z.
  • P. Gaudenzi, and K.-J. Bathe, An iterative finite element procedure for the analysis of piezoelectric continua, J. Intell. Mater. Syst. Struct. 6 (2), 266 (1995). DOI: 10.1177/1045389X9500600213.
  • G. Facchini et al., Use of the wavelet packet transform for pattern recognition in a structural health monitoring application, J. Intell. Mater. Syst. Struct. 26 (12), 1513 (2015). DOI: 10.1177/1045389X14544146.
  • R. Swati et al., Investigation of tensile and in-plane shear properties of carbon fiber reinforced composites with and without piezoelectric patches for micro-crack propagation using extended finite element method, Microsyst. Technol. 25 (6), 2361 (2019). DOI: 10.1007/s00542-018-4120-y.
  • H. Elahi, M. Eugeni, and P. Gaudenzi, Electromechanical degradation of piezoelectric patches in Analysis and Modelling of Advanced Structures and Smart Systems (Springer, Berlin, Germany, 2018), pp. 35–44.
  • G. K. Ottman et al., Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, IEEE Trans. Power Electron. 17 (5), 669 (2002). DOI: 10.1109/TPEL.2002.802194.
  • H. A. Sodano, D. J. Inman, and G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock Vib. Digest. 36 (3), 197 (2004). DOI: 10.1177/0583102404043275.
  • P. Gaudenzi, and G. Facchini, Wireless structural sensing in Advanced Materials Research (Trans Tech Publ, Stafa-Zurich, Switzerland, 2013), pp. 155–165. DOI: 10.4028/www.scientific.net/AMR.745.155.
  • C. A. Howells, Piezoelectric energy harvesting, Energy Convers Manag. 50 (7), 1847 (2009). DOI: 10.1016/j.enconman.2009.02.020.
  • H. Kim, Y. Tadesse, and S. Priya, Piezoelectric energy harvesting in: Energy Harvesting Technologies (Springer, Berlin, Germany, 2009), pp. 3–39.
  • A. Erturk et al., On the energy harvesting potential of piezoaeroelastic systems, Appl. Phys. Lett. 96 (18), 184103 (2010). DOI: 10.1063/1.3427405.
  • H. Elahi et al., Response of piezoelectric materials on thermomechanical shocking and electrical shocking for aerospace applications, Microsyst. Technol. 24 (9), 3791 (2018). DOI: 10.1007/s00542-018-3856-8.
  • H. Elahi et al., Stability of piezoelectric material for suspension applications, in Aerospace Science & Engineering (ICASE), 2017 Fifth International Conference on, 2017. IEEE, pp. 1–5.
  • L. Lampani, R. Grillo, and P. Gaudenzi, Finite element models of piezoelectric actuation for active flow control, Acta Astronaut. (UK) 71, 129 (2012). DOI: 10.1016/j.actaastro.2011.07.026.
  • K. Yang, J. Wang, and D. Yurchenko, A double-beam piezo-magneto-elastic wind energy harvester for improving the galloping-based energy harvesting, Appl. Phys. Lett. 115 (19), 193901 (2019). DOI: 10.1063/1.5126476.
  • E. F. Crawley, and J. D. Luis, Use of piezoelectric actuators as elements of intelligent structures, AIAA J. 25 (10), 1373 (1987). DOI: 10.2514/3.9792.
  • P. Bouchilloux, F. Claeyssen, and R. L. Letty, Amplified piezoelectric actuators: From aerospace to underwater applications in: Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies, International Society for Optics and Photonics, 2004 pp. 143–155.
  • E. H. Dowell et al., A modern course in aeroelasticity (Springer, Berlin, Germany, 1989).
  • E. H. Dowell, and M. Ilgamov, Studies in nonlinear aeroelasticity (Springer Science & Business Media, Berlin, Germany, 2012).
  • J. Guckenheimer, and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer Science & Business Media, Berlin, Germany, 2013).
  • M. Eugeni, D. Dessi, and F. Mastroddi, A Normal Form analysis in a finite neighborhood of a Hopf bifurcation: On the Center Manifold dimension, Nonlinear Dyn. 91 (3), 1461 (2018). DOI: 10.1007/s11071-017-3958-3.
  • M. Eugeni, F. Mastroddi, and E. H. Dowell, Normal form analysis of a forced aeroelastic plate, J. Sound Vib. 390, 141 (2017). DOI: 10.1016/j.jsv.2016.12.001.
  • A. Abdelkefi, Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations, 2012, in Virginia Tech
  • A. Abdelkefi, Aeroelastic energy harvesting: A review, Int. J. Eng. Sci. 100, 112 (2016). DOI: 10.1016/j.ijengsci.2015.10.006.
  • D. Dessi, and F. Mastroddi, Limit-cycle stability reversal via singular perturbation and wing-flap flutter, J. Fluids Struct. 19 (6), 765 (2004). DOI: 10.1016/j.jfluidstructs.2004.04.010.
  • E. Sheta et al., Active control of F/A-18 vertical tail buffeting using piezoelectric actuators, in 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003. pp. 1887. DOI: 10.2514/6.2003-1887.
  • J. Xie et al., A piezoelectric energy harvester based on flow-induced flexural vibration of a circular cylinder, J. Intell. Mater. Syst. Struct. 23 (2), 135 (2012). DOI: 10.1177/1045389X11431744.
  • Z. Butt et al., Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications, J. Mech. Sci. Technol. 30 (8), 3553 (2016). DOI: 10.1007/s12206-016-0715-3.
  • N. G. Elvin, and A. A. Elvin, The flutter response of a piezoelectrically damped cantilever pipe, J. Intell. Mater. Syst. Struct. 20 (16), 2017 (2009). DOI: 10.1177/1045389X09345557.
  • T. Theodorsen, General theory of aerodynamic instability and the mechanism of flutter, NACA Thecnical Report, 1935
  • P. S. Beran et al., Studies of store-induced limit-cycle oscillations using a model with full system nonlinearities, Nonlinear Dyn. 37 (4), 323 (2004). DOI: 10.1023/B:NODY.0000045544.96418.bf.
  • N. Muturi et al., Stall flutter oscillation measurements from a two degree-of-freedom airfoil with nonlinear stiffness, in 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013. pp. 1842. DOI: 10.2514/6.2013-1842.
  • A. Abdelkefi, A. Nayfeh, and M. Hajj, Enhancement of power harvesting from piezoaeroelastic systems, Nonlinear Dyn. 68 (4), 531 (2012). DOI: 10.1007/s11071-011-0234-9.
  • Y. Wu, D. Li, and J. Xiang, Performance analysis and parametric design of an airfoil-based piezoaeroelastic energy harvester, in 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015. pp. 0445. DOI: 10.2514/6.2015-0445.
  • C. Bao et al., A piezoelectric energy harvesting scheme based on stall flutter of airfoil section, Euro. J. Mech. B/Fluids 75, 119 (2019).
  • F. Mastroddi, D. Dessi, and M. Eugeni, POD analysis for free response of linear and nonlinear marginally stable aeroelastic dynamical systems, J. Fluids Struct. 33, 85 (2012). DOI: 10.1016/j.jfluidstructs.2012.05.001.
  • R. T. Jones, The unsteady lift of a wing of finite aspect ratio, 1940.
  • J. W. Edwards, H. Ashley, and J. V. Breakwell, Unsteady aerodynamic modeling for arbitrary motions, AIAA J. 17 (4), 365 (1979). DOI: 10.2514/3.7348.
  • D. Dessi, F. Mastroddi, and L. Morino, Limit-cycle stability reversal near a Hopf bifurcation with aeroelastic applications, J. Sound Vib. 256 (2), 347 (2002). DOI: 10.1006/jsvi.2001.4212.
  • H. Elahi, M. Eugeni, and P. Gaudenzi, Design and performance evaluation of a piezoelectric aeroelastic energy harvester based on the limit cycle oscillation phenomenon, Acta Astronaut. (UK) 157, 233 (2019). DOI: 10.1016/j.actaastro.2018.12.044.
  • H. Elahi, M. Eugeni, and P. Gaudenzi, A review on mechanisms for piezoelectric-based energy harvesters, Energies 11 (7), 1850 (2018). DOI: 10.3390/en11071850.
  • D. H. Hodges, and G. A. Pierce, Introduction to structural dynamics and aeroelasticity (Cambridge University Press, Cambridge, 2011).
  • A. Abdelkefi et al., An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system, Nonlinear Dyn. 71 (1-2), 159 (2013). DOI: 10.1007/s11071-012-0648-z.
  • M. Bryant, and E. Garcia, Modeling and testing of a novel aeroelastic flutter energy harvester, J. Vib. Acoustics 133 (1), 011010 (2011). DOI: 10.1115/1.4002788.
  • M. Eugeni et al., Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter, Aerosp. Sci. Technol. 97, 105634 (2020). DOI: 10.1016/j.ast.2019.105634.
  • M. Eugeni et al., Experimental Evaluation of Piezoelectric Energy Harvester Based on Flag-Flutter In Conference of the Italian Association of Theoretical and Applied Mechanics (Springer, Cham, September 2019), pp. 807–816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.