Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
78
Views
0
CrossRef citations to date
0
Altmetric
Selected Papers of The Fourth International Conference on Applied Physics and Materials Applications (ICAPMA-2019)

Physical and Structural Properties of Sm3+ Doped Phosphate Glasses

, , , , &
Pages 143-150 | Received 18 Sep 2019, Accepted 30 Jun 2020, Published online: 16 Mar 2021

References

  • H. Lin et al., A study of the luminescence properties of Eu3+ doped borate crystal and glass, Solid State Commun. 141 (8), 436 (2007). DOI: 10.1016/j.ssc.2006.12.003.
  • Y. L. P. Reddy, M. Waaiz, and C. K. Reddy, Optical properties of fluoroborate glasses doped with Samarium (Sm3+), Int. J. Pure Appl. Phys. 13 (2), 249 (2017).
  • S. Q. Mawlud, A comparative enhancement of Au and Ag NPs role on radiative properties in Sm3+ doped zinc-sodium tellurite glass: Judd-Ofelt parameter, Spectrochim. Acta A Mol. Biomol. Spectrosc. 209, 78 (2019). DOI: 10.1016/j.saa.2018.10.032.
  • S. Thomas, and M. L. Chithambo, Characteristics of the thermoluminescence of Sm3+-doped P2O5-K2O-MgO-Al2O3-ZnF2 glass, Radiat. Meas. 120, 83 (2018). DOI: 10.1016/j.radmeas.2018.06.005.
  • I. I. Kindrat et al., Effect of silver co-doping on enhancement of the Sm3+ luminescence in lithium tetraborate glass, J. Lumin. 213, 290 (2019). DOI: 10.1016/j.jlumin.2019.05.045.
  • M. E. Alvarez-Ramos et al., Co-emission and energy transfer of Sm3+ and/or Eu3+ activated zinc-germanate-tellurite glass as a potential tunable orange to reddish-orange phosphor, J. Non-Cryst. Solids 521, 119462 (2019). DOI: 10.1016/j.jnoncrysol.2019.119462.
  • F. Steudel et al., Quantum efficiency and energy transfer processes in rare-earth doped borate glass for solid-state lighting, J. Lumin. 170, 770 (2016). DOI: 10.1016/j.jlumin.2015.07.032.
  • Z. Mazurak et al., Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass, Opt. Mater. 32 (4), 547 (2010). DOI: 10.1016/j.optmat.2009.11.011.
  • N. Wantana et al., Energy transfer from Gd3+ to Sm3+ and luminescence characteristics of CaO–Gd2O3–SiO2–B2O3 scintillating glasses, J. Lumin. 181, 382 (2017). DOI: 10.1016/j.jlumin.2016.09.050.
  • X. Y. Sun et al., Eu3+-activated B2O3–GeO2–RE2O3 (RE = Y3+, La3+ and Gd3+) borogermanate scintillating glasses, J. Non-Cryst. Solids 389, 72 (2014). DOI: 10.1016/j.jnoncrysol.2014.01.042.
  • W. Jia et al., Luminescence properties and energy transfer of Sm3+/Tb3+ co-doped glass ceramics containing Na9YSi6O18, J. Lumin. 215, 116576 (2019). DOI: 10.1016/j.jlumin.2019.116576.
  • A. Marzuki, H. Purwanto, and L. Rahmasari, 2012. Fabrikasi dan Karakterisasi Kaca Tellurite Didoping Ion Nd3+ sebagai Material Pembangkit Laser Inframerah.
  • D. R. Uhlmann, and N. J. Kreidl, Glass: Science and Technology (Academics Press, New York, 1983), Vol. 1.
  • N. Chanthima et al., Physical, optical and luminescence properties of Sm3+ doped lithium aluminium phosphate glass system, Mater. Today: Proc. 5 (7), 15066 (2018).
  • P. Chimalawong et al., Optical Properties of the SiO2-Na2O-CaO-Nd2O3 Glasses, J. Appl. Sci. 7 (4), 584 (2010).
  • W. Z. Tawfik et al., Physical study of Sm3+ doped borochromate glass system, J. Alloys Compd. 509 (41), 10070 (2011). DOI: 10.1016/j.jallcom.2011.08.037.
  • K. S. Rudramamba et al., Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications, Opt. Mater. 89, 68 (2019). DOI: 10.1016/j.optmat.2018.12.048.
  • P. Xiao et al., Color tunability of Sm3+ doped antimony–phosphate glass phosphors showing broadband fluorescence, J. Lumin. 178, 147 (2016). DOI: 10.1016/j.jlumin.2016.05.052.
  • W. Zhang et al., Enhanced luminescent properties of Sm3+ doped glass ceramics–as potential red–orange phosphor for white light-emitting diodes, Mater. Lett. 160, 459 (2015). DOI: 10.1016/j.matlet.2015.08.002.
  • A. Wagh et al., The effect of 1.25 MeV γ rays on Sm3+ doped lead fluoroborate glasses for reddish orange laser and radiation shielding applications, J. Lumin. 199, 87 (2018). DOI: 10.1016/j.jlumin.2018.03.016.
  • F. Ahmadi, and A. Asgari, Spectroscopic investigation of Sm3+ doped sulfophosphate glasses for visible photonic applications, J. Non-Cryst. Solids 505, 406 (2019). DOI: 10.1016/j.jnoncrysol.2018.11.023.
  • N. Luewarasirikul, and J. Kaewkhao, Development of Sm3+-doped Ba-Na-B glasses for orange-emitting material by investigating the effect of BaO concentration, Mater. Today: Proc. 5 (7), 14975 (2018).
  • F. Ahmadi, R. Hussin, and S. K. Ghoshal, Spectroscopic attributes of Sm3+ doped magnesium zinc sulfophosphate glass: Effects of silver nanoparticles inclusion, Opt. Mater. 73, 268 (2017). DOI: 10.1016/j.optmat.2017.08.021.
  • J. Rajagukguk, R. Situmorang, M. Djamal, R. Rajaramakrishna, J. Kaewkhao, and P.H. Minh Structural, spectroscopic and optical gain of Nd3+ doped fluorophosphate glasses for solid state laser application. J. Lumin., 216, (2019). https://doi.org/10.1016/j.jlumin.2019.116738
  • T. S. Rao et al., Energy transfer (Ce3+→ Sm3+) influence on PL emission of Ce3+/Sm3+ co-doped barium gallium borosilicate glasses, Physica B 559, 8 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.