Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 214, 2021 - Issue 1
134
Views
2
CrossRef citations to date
0
Altmetric
Selected Papers of The Fourth International Conference on Applied Physics and Materials Applications (ICAPMA-2019)

Synthesis of NiO Nanostructures by Sonocatalyzed Microwave Irradiation Technique and Their Acetone Sensing Properties

, , , &
Pages 205-216 | Received 20 Sep 2019, Accepted 07 Jul 2020, Published online: 16 Mar 2021

References

  • R. Binions, and A. J. T. Naik, Metal oxide semiconductor gas sensors in environmental monitoring, in Semiconductor Gas Sensors (Elsevier, 2013), pp. 433–466. 10.1533/9780857098665.4.433.
  • T. P. Mokoena, H. C. Swart, and D. E. Motaung, A review on recent progress of p-type nickel oxide based gas sensors: future perspectives, J. Alloys Compd. 805, 267 (2019). DOI: 10.1016/j.jallcom.2019.06.329.
  • E. C. Linganiso et al., Observation of the structural, optical and magnetic properties during the transformation from hexagonal NiS nano-compounds to cubic NiO nanostructures due to thermal oxidation, J. Alloys Compd. 629, 131 (2015). DOI: 10.1016/j.jallcom.2014.11.185.
  • R. Miao, X. Yu, and W. Zeng, Novel NiO flower-like microspheres with abundant nanoparticles adhering to the petals: hydrothermal synthesis and their gas sensing properties, Mater. Lett. 173, 107 (2016). DOI: 10.1016/j.matlet.2016.03.042.
  • Q. Wang et al., Hydrothermal and sintering synthesis of porous sheet-like NiO for xylene gas sensor, Mater. Res. Express 6 (11), 1150e6 (2019). DOI: 10.1088/2053-1591/ab4f18.
  • M. Tyagi, M. Tomar, and V. Gupta, NiO nanoparticle-based urea biosensor, Biosens. Bioelectron. 41, 110 (2013). DOI: 10.1016/j.bios.2012.07.062.
  • L. Wang et al., Enhanced acetone sensing performances of hierarchical hollow Au-loaded NiO hybrid structures, Sens. Actuators B Chem. 161 (1), 178 (2012). DOI: 10.1016/j.snb.2011.10.005.
  • C. Dong et al., Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis, Sens. Actuators B Chem. 220, 171 (2015). DOI: 10.1016/j.snb.2015.05.056.
  • J. Fu et al., Enhanced gas sensing performance of electrospun Pt-functionalized NiO nanotubes with chemical and electronic sensitization, ACS Appl. Mater. Interfaces 5 (15), 7410 (2013). DOI: 10.1021/am4017347.
  • J. Wang, X. Wei, and P. Wangyang, Gas-sensing devices based on Zn-doped NiO two-dimensional grainy films with fast response and recovery for ammonia molecule detection, Nanoscale Res. Lett. 10 (1), 461 (2015). DOI: 10.1186/s11671-015-1170-2.
  • M. Ben Amor et al., Structural, optical and electrical studies on Mg-doped NiO thin films for sensitivity applications, Mater. Sci. Semicond. Process. 27, 994 (2014). DOI: 10.1016/j.mssp.2014.08.008.
  • C. Feng et al., Enhanced sensitive and selective xylene sensors using W-doped NiO nanotubes, Sens. Actuators B Chem. 221, 1475 (2015). DOI: 10.1016/j.snb.2015.07.114.
  • S. Yang et al., Controlled synthesis of Micro/Nano MoO3 by physical vapor deposition and its gas sensing properties to NH3 gas at room temperature, Ferroelectrics 477 (1), 112 (2015). DOI: 10.1080/00150193.2015.1000137.
  • Y. Lu et al., Synthesis of cactus-like NiO nanostructure and their gas-sensing properties, Mater. Lett. 164, 48 (2016). DOI: 10.1016/j.matlet.2015.10.117.
  • P. Wu et al., Solution plasma synthesized nickel oxide nanoflowers: an effective NO2 sensor, Mater. Lett. 82, 191 (2012). DOI: 10.1016/j.matlet.2012.05.087.
  • F. Yang, and Z. Guo, Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde, J. Colloid Interface Sci. 467, 192 (2016). DOI: 10.1016/j.jcis.2016.01.033.
  • Q. Yang et al., Synthesis of NiO nanowires by a sol-gel process, Mater. Lett. 59 (14-15), 1967 (2005). DOI: 10.1016/j.matlet.2005.02.037.
  • J. Y. Park et al., Synthesis of NiO nanofibers and their gas sensing properties, J. Nanosci. Nanotechnol. 12 (2), 1288 (2012). DOI: 10.1166/jnn.2012.4602.
  • N. G. Cho et al., Gas sensing properties of p-type hollow NiO hemispheres prepared by polymeric colloidal templating method, Sens. Actuators B Chem. 155 (1), 366 (2011). DOI: 10.1016/j.snb.2010.12.031.
  • N. D. Hoa, and S. A. El-Safty, Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas, Chemistry 17 (46), 12896 (2011). DOI: 10.1002/chem.201101122.
  • S. Park et al., UV-activated gas sensing properties of ZnS nanorods functionalized with Pd, Curr. Appl. Phys. 14, S57 (2014). DOI: 10.1016/j.cap.2013.11.041.
  • J. Husain, S. A. M. Nabirqudri, and A. S. Roy, Thermal, electrical and sensing properties of polypyrrole/tin oxide nanocomposite, Ferroelectrics 531 (1), 92 (2018). DOI: 10.1080/00150193.2018.1497416.
  • M. Tadić, M. Panjan, and D. Marković, NiO/SiO2 nanostructure and the magnetic moment of NiO nanoparticles, Mater. Lett. 64 (19), 2129 (2010). DOI: 10.1016/j.matlet.2010.07.006.
  • J. H. Bang, and K. S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (10), 1039 (2010). DOI: 10.1002/adma.200904093.
  • N. Chumha et al., A single-step method for synthesis of CuInS2 nanostructures using cyclic microwave irradiation, Ceram. Int. 42 (2016). 10.1016/j.ceramint.2016.07.019.
  • J. Hu, and Q. Wang, New synthesis for a group of tetragonal LnVO4 and their luminescent properties, Mater. Lett. 120, 20 (2014). DOI: 10.1016/j.matlet.2014.01.020.
  • N. Hongsith et al., Ethanol sensor based on ZnO and Au-doped ZnO nanowires, Ceram. Int. 34, 82 (2008). 10.1016/j.ceramint.2007.09.099.
  • R. K. Sharma and R. Ghose, Synthesis of porous nanocrystalline NiO with hexagonal sheet-like morphology by homogeneous precipitation method, Superlattices Microstruct. 80, 169 (2015). DOI: 10.1016/j.spmi.2014.12.034.
  • C. Suryanarayana and M. G. Norton, X-Ray Diffraction (Springer, Boston, MA, 1998). 10.1007/978-1-4899-0148-4.
  • P. Gimenez and S. Fereres, Effect of heating rates and composition on the thermal decomposition of ntrate based molten salts, Energy Procedia 69, 654 (2015). DOI: 10.1016/j.egypro.2015.03.075.
  • Y. Li, B. Tan, and Y. Wu, Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures, Chem. Mater. 20 (2), 567 (2008). DOI: 10.1021/cm070784g.
  • A. Al-Hajry et al., Low-temperature growth and properties of flower-shaped β- Ni(OH)2 and NiO structures composed of thin nanosheets networks, Superlattices Microstruct. 44 (2), 216 (2008)., . DOI: 10.1016/j.spmi.2008.04.008.
  • W. J. Li et al., Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203 (1-2), 186 (1999). DOI: 10.1016/S0022-0248(99)00076-7.
  • P. Raksa et al., Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction, Ceram. Int. 35 (2), 649 (2009). DOI: 10.1016/j.ceramint.2008.01.028.
  • W. Chen et al., Gas sensing properties and mechanism of nano-SnO2-based sensor for hydrogen and carbon monoxide, J. Nanomater. 2012, 1 (2012). DOI: 10.1155/2012/612420.
  • F. Ahmed et al., Mn-doped ZnO nanorod gas sensor for oxygen detection, Curr. Appl. Phys. 13, 1 (2013). 10.1016/j.cap.2012.12.029.
  • K. J. Choi, and H. W. Jang, One-dimensional oxide nanostructures as gas-sensing materials: review and issues, Sensors (Basel) 10 (4), 4083 (2010). DOI: 10.3390/s100404083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.