Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 213, 2021 - Issue 1
221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Sm-Substitution on Dielectric and Multiferroic Properties of BiFeO3–BaTiO3 Ceramics

, &
Pages 75-92 | Received 24 Jan 2020, Accepted 09 Sep 2020, Published online: 28 Feb 2021

References

  • T. H. Wang et al., Magneto electric coupling and phase transition in BiFeO3 and (BiFeO3)0.95-(BaTiO3)0.05 ceramics, J. Appl. Phys. 109 (4), 044101 (2011). DOI: 10.1063/1.3551578.
  • W. Zhou et al., Structure, ferroelectric, ferromagnetic and piezoelectric properties of Al-modified BiFeO3-BaTiO3 multiferroic ceramics, Phys. Status Solidi. A 12, 3 (2015). DOI: 10.1002/pssa.201431485.
  • J. S. Park et al., Enhanced piezoelectric properties of BaZrO3-substituted 0.67BiFeO3-0.33BaTiO3 lead-free ceramics, J. Korean Phys. Soc. 66, 7 (2015). DOI: 10.3938/jkps.66.1106.
  • K. M. Kim et al., Multiferroic 0.8BiFeO3-0.2BaTiO3 thin films prepared by pulsed laser deposition, Ferroelectrics 454, 47–50 (2013). DOI: 10.1080/00150193.2013.842755.
  • H. Liu, R. Liu, and T. Liu, Ferroelectricity of highly preferentially oriented (BiFeO3)1-x (BaTiO3)x solid solution film by sol–gel method, J. Sol. Gel. Sci. Technol. 57 (1), 1 (2011). DOI: 10.1007/s10971-010-2313-7.
  • K. Sen et al., Room-temperature magnetic studies of La-modified BiFeO3 ceramic, Mater. Lett. 65, 12 (2011). DOI: 10.1016/j.matlet.2011.03.043.
  • J. M. Kim et al., Effect of sintering temperature on the piezoelectric properties in BiFeO3-BaTiO3Ceramics, J. Korean Phys. Soc. 61 (1), 6 (2012). DOI: 10.3938/jkps.61.947.
  • J. Wang et al., Simultaneously enhanced piezoelectric properties and depolarization temperature in calcium doped BiFeO3-BaTiO3 ceramics, J. Alloys Comp. 748, 758–765 (2018). DOI: 10.1016/j.jallcom.2018.03.174.
  • X. H. Liu et al., Ferroelectric and ferromagnetic properties of 0.7BiFe1-xCrxO3–0.3BaTiO3 solid solutions, J. Am. Ceram. Soc. 91, 3731–3734 (2008). DOI: 10.1111/j.1551-2916.2008.02676.x.
  • S. Huang et al., Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics, Ceram. Int. 44, 8955–8962 (2018). DOI: 10.1016/j.ceramint.2018.02.095.
  • R. Rai et al., Local nano electro mechanical properties of multiferroics Gd-doped BiFeO3–BaTiO3 solid solution, J. Nano Sci. Nanotechnol. 12, 6639–6644 (2012). DOI: 10.1166/jnn.2012.4559.
  • M. Zhanga et al., Effects of sintering temperature and composition on dielectric, ferroelectric, and magnetoelectric properties of BaTiO3–BiFeO3 solid solutions, Ceram. Int. 43, 16957–16964 (2017). DOI: 10.1016/j.ceramint.2017.09.101.
  • M. Tian et al., Improved ferroelectricity and ferromagnetism of Eu-modified BiFeO3–BaTiO3 lead-free multiferroic ceramics, J. Mater. Sci. Mater. Electron. 26 8840–8847 (2015). DOI: 10.1007/s10854-015-3564-4.
  • Y. P. Wang et al., Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering, Appl. Phys. Lett. 84 (10), 1731 (2004). DOI: 10.1063/1.1667612.
  • A. Prasatkhetragarna et al., Investigation on ferromagnetic and ferroelectric properties of (La, K)-doped BiFeO3–BaTiO3 solid solution, Ceram. Int. 39, S249–S252 (2013). DOI: 10.1016/j.ceramint.2012.10.071.
  • Q. Li et al., High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics, J. Mater. Sci. 52, 229–237 (2017). DOI: 10.1007/s10853-016-0325-6.
  • X. Wu et al., Effects of Nb doping on the microstructure, ferroelectric and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics, Bull. Mater. Sci. 39, 3 (2016). DOI: 10.1007/s12034-016-1198-7.
  • Q. Zheng et al., Enhanced ferroelectricity, piezoelectricity and ferromagnetism in Nd-modified BiFeO3- BaTiO3 lead-free ceramics, J. Appl. Phys. 116, 184101 (2014). DOI: 10.1063/1.4901198.
  • V. Paunovic, L. Zivkovic, and V. Mitic, Influence of rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics, Sci. Sinter. 42, 69–79 (2010). DOI: 10.2298/SOS1001069P.
  • N. Zhaoa et al., Dielectric, conductivity and piezoelectric properties in (0.67-x)BiFeO3-0.33BaTiO3-xSrZrO3 ceramics, Ceram. Int. 44, 15 (2018). DOI: 10.1016/j.ceramint.2018.07.116.
  • H. Yang et al., Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3–BaTiO3 high temperature ceramics, J. Eur. Ceram. Soc. 33, 6 (2013). DOI: 10.1016/j.jeurceramsoc.2012.11.019.
  • Y. Guoa et al., Critical roles of Mn-ions in enhancing insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics, J. Mater. Chem. C 3, 5811 (2015). DOI: 10.1039/C5TC00507H.
  • M. Alguero et al., High temperature piezoelectric BiScO3-PbTiO3 synthesized by mechano chemical methods, Acta. Mater. 60, 3 (2012). DOI: 10.1016/j.actamat.2011.10.050.
  • H. Sun et al., Structure and electric properties of Sm doped BaTiO3 ceramics, Ferroelec 404, 99–104 (2010). DOI: 10.1080/00150193.2010.482459.
  • S. Y. Quan et al., Multiferroic properties in terbium orthoferrite, Chin. Phys. B 23, 7 (2014). DOI: 10.1088/1674-1056/23/7/077505.
  • P. Gupta et al., Structural, dielectric, impedance and modulus spectroscopy of Bi2NdTiVO9 ferroelectric ceramics, J. Mater. Sci. Mater. Electron. 28, 17344–17353 (2017). DOI: 10.1007/s10854-017-7667-y.
  • J. Schiemer et al., Temperature-dependent electrical, elastic and magnetic properties of sol–gel synthesized Bi0.9Ln0.1FeO3 (Ln = Nd, Sm), J. Phys. Conden. Matter. 24, 12 (2012). DOI: 10.1088/0953-8984/24/12/125901.
  • M. Wei et al., Effect of BiMO3 (M = Al, In, Y, Sm, Nd and La) doping on the dielectric properties of BaTiO3ceramics, Ceram. Int. 43, 13 (2017). DOI: 10.1016/j.ceramint.2017.03.139.
  • C. B. Sawyer and C. H. Tower, Rochelle salt as a dielectric, Phys. Rev. 35 (3), 269 (1930). DOI: 10.1103/PhysRev.35.269.
  • H. Qin et al., Hydrothermal synthesis of perovskite BiFeO3–BaTiO3 crystallites, J. Am. Ceram. Soc. 94 (11), 3671 (2011). DOI: 10.1111/j.1551-2916.2011.04839.x.
  • D. Wang et.al., Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics, J. Euro. Ceram. Soc. 37, 4 (2016). DOI: 10.1016/j.jeurceramsoc.2016.10.027.
  • R. Raia et al., Ferroelectric and ferromagnetic properties of Gd-doped BiFeO3–BaTiO3 solid solution, Mate. Chem. Phys. 119, 3 (2010). DOI: 10.1016/j.matchemphys.2009.10.011.
  • L. Luo et al., Phase transition, ferroelectric and piezoelectric properties of Bi(Mg0.5Zr0.5)O3-modified BiFeO3–BaTiO3 lead-free ceramics, J. Mater. Sci. Mater. Electron. 25, 1736–1744 (2014). DOI: 10.1007/s10854-014-1792-7.
  • B. S. Kar et al., Structural and electrical properties of Gd-doped BiFeO3: BaTiO3 (3:2) multiferroic ceramic materials, J. Mater. Sci. Mater. Electron. 30, 2154 (2019). DOI: 10.1007/s10854-018-0487-x.
  • M. De et al., Structural, dielectric and electrical characteristics of BiFeO3-NaNbO3 solid solutions, Ceram. Int. 44, 10 (2018). DOI: 10.1016/j.ceramint.2018.03.263.
  • A. K. Kundu et al., A comparative study of magnetic and dielectric behaviors for La1−x Bix Mn1−y Fey O3 series (with x = 0.5, 0.7 and y = 0.3, 0.7), J. Phys. Condens Matter. 24, 255902 (2012). DOI: 10.1088/0953-8984/24/25/255902.
  • R. K. Panda et al., Dielectric relaxation and conduction mechanism of cobalt ferrite nanoparticles, J. All. Comp. 615, 5 (2014). DOI: 10.1016/j.jallcom.2014.07.031.
  • H. Khassaf et al., Potential barrier increase due to Gd doping of BiFeO3 layers in Nb:SrTiO3-BiFeO3-Pt structures displaying diode-like behavior, Appl. Phys. Lett. 100 (25), 252903 (2012). DOI: 10.1063/1.4729816.
  • S. Pattanayak et al., Impedance spectroscopy of Gd-doped BiFeO3 multiferroics, Appl. Phys. A. 112 (2), 387 (2013). DOI: 10.1007/s00339-012-7412-6.
  • S. Madolappa et al., Improved electrical characteristics of Pr-doped BiFeO3 ceramics prepared by sol–gel route, Mater. Res. Express 3 (6), 065009 (2016). DOI: 10.1088/2053-1591/3/6/065009.
  • M. Amin et al., Structural and impedance spectroscopic analysis of Sr/Mn modified BiFeO3 multiferroics, J. Mater Sci. Mater. Electron. 27, 11003–11011 (2016). DOI: 10.1007/s10854-016-5216-8.
  • R. A. M. Gotardo et al., Ferroic states and phase coexistence in BiFeO3-BaTiO3 solid solutions, J. Appl. Phys. 112, 104112 (2012). DOI: 10.1063/1.4766450.
  • D. Lebeugle et al., Electric field-induced spin-Flop in BiFeO3 single crystals at room-temperature, Phys. Rev. Lett. 100 (22), 227602 (2008). DOI: 10.1103/PhysRevLett.100.227602.
  • V. R. Reddy et al., Study of weak ferromagnetism in polycrystalline multiferroic Eu-doped bismuth ferrite, Appl. Phys. Lett. 94 (8), 082505 (2009). DOI: 10.1063/1.3089577.
  • S. Sahoo, P. K. Mahapatra, and R. N. P. Choudhary, The structural, electrical and magnetoelectric properties of soft-chemically-synthesized SmFeO3 ceramics, J. Phys. D. Appl. Phys. 49, 035302 (2016). DOI: 10.1088/0022-3727/49/3/035302.
  • P. Dey et al., Room temperature ferroelectric and ferromagnetic properties of multiferroics xLa0.7Sr0.3MnO3–(1 − x)ErMnO3,weight percent (x = 0.1, 0.2) composites, App. Phys. Lett. 90, 16 (2007). DOI: 10.1063/1.2723198.
  • Y. Wei et al., Dielectric, ferroelectric, and piezoelectric properties of BiFeO3–BaTiO3 ceramics, J. Am. Ceram. Soc. 96 (10), 3163 (2013). DOI: 10.1111/jace.12475.
  • S. Sharma et al., Co-existence of tetragonal and monoclinic phases and multiferroic properties for x ≤ 0.3 in the (1-x)Pb (Zr0.52Ti0.48)O3–(x) BiFeO3 system, J. Alloys Comp. 614, 165–172 (2014). DOI: 10.1016/j.jallcom.2014.06.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.