Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 213, 2021 - Issue 1
116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Study of Structural and Magnetic Properties of Ni Substituted M Type Calcium Hexaferrite

, &
Pages 122-136 | Received 14 Jul 2020, Accepted 10 Nov 2020, Published online: 28 Feb 2021

References

  • A. Dairy, L. Al-Hmoud, and H. Khatatbeh, Magnetic and structural properties of barium hexaferrite nanoparticles doped with titanium, Symmetry 11 (6), 732 (2019). DOI: 10.3390/sym11060732.
  • C. Mamatha et al., Structural and electrical properties of aluminium substituted nano calcium ferrites, Procedia Mater. Sci. 5, 780 (2014). DOI: 10.1016/j.mspro.2014.07.328.
  • I. Auwal et al., Electrical and dielectric characterization of Bi–La ion-substituted barium hexaferrites, J. Supercond. Nov. Magn. 30 (6), 1499 (2017). DOI: 10.1007/s10948-016-3945-9.
  • A. El-Sayed et al., Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer, AIP Adv. 5 (10), 107131 (2015). DOI: 10.1063/1.4934790.
  • P. Xu, X. Han, and M. Wang, Synthesis and magnetic properties of BaFe12O19 hexaferrite nanoparticles by a reverse microemulsion technique, J. Phys. Chem. C. 111 (16), 5866 (2007). DOI: 10.1021/jp068955c.
  • N. Widyastuti, Sasria et al., Ni and Zn substituted M-type barium hexaferrite processed by Sol–Gel auto combustion method, J. Phys. Conf. Ser. 877, 012015 (2017). DOI: 10.1088/1742-6596/877/1/012015
  • M. Ashiq et al., Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices, Journal of Mag. and Magnetic Materials 324 (1), 15 (2012). DOI: 10.1016/j.jmmm.2011.07.016.
  • L. Dong et al., Synthesis of hexagonal barium ferrite nanoparticle by sol-gel method, Rare Met. 25 (6), 605 (2006). DOI: 10.1016/S1001-0521(07)60155-7.
  • M. Mozaffari, M. Taheri, and J. Amighian, Preparation of barium hexaferrite nanopowders by the sol–gel method, using goethite, J. Magn. Magn. Mater. 321 (9), 1285 (2009). DOI: 10.1016/j.jmmm.2008.11.106.
  • P. R. Moharkar et al., Properties of nanocrystalline M-Type calcium hexaferrite synthesized by Sol-Gel auto-combustion technique, International Journal of Researches in Biosciences and Agriculture Technology 1 (1), 57 (2013). DOI: 10.29369/ijrbat.2013.01.i.0005
  • J. Tang et al., Structure and magnetic analyses of hexaferrite Sr1−xLaxFe22+Fe163+O27 prepared via the solid-state reaction, J. Mater. Sci: Mater. Electron. 30 (1), 284 (2019). DOI: 10.1007/s10854-018-0291-7.
  • E. Kiani, A. Rozatian, and M. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method, J. Mater. Sci: Mater. Electron. 24 (7), 2485 (2013). DOI: 10.1007/s10854-013-1122-5.
  • H. Sözeri, A. Baykal, and B. Ünal, Low-temperature synthesis of single-domain Sr-hexaferrite particles by solid-state reaction route, Phys. Status Solidi A. 209 (10), 2002 (2012). DOI: 10.1002/pssa.201228023.
  • C. Mamatha, Evaluation of structural properties of calcium hexaferrites on the basis of synthesis method, Integr. Ferroelectr. 204 (1), 23 (2020). DOI: 10.1080/10584587.2019.1674982.
  • M. Drofenik et al., Barium hexaferrite prepared by hydrothermal synthesis, Msf. 555, 183 (2007). DOI: 10.4028/www.scientific.net/MSF.555.183.
  • M. Hessien, M. Rashad, and K. El-Barawy, Controlling the composition and magnetic properties of strontium hexaferrite synthesized by co-precipitation method, J. Magn. Magn. Mater. 320 (3-4), 336 (2008). DOI: 10.1016/j.jmmm.2007.06.009.
  • S. Hu et al., Synthesis and properties of barium ferrite nano- powders by chemical co-precipitation method, J. Magn. Magn. Mater. 473, 79 (2019). DOI: 10.1016/j.jmmm.2018.10.044.
  • A. Sutka et al., A comparative study of Ni0.7Zn0.3Fe2O4obtained by sol-gel auto-combustion and flash combustion methods, IOP Conf. Ser: Mater. Sci. Eng. 25, 012019 (2011). DOI: 10.1088/1757-899X/25/1/012019.
  • M. Hossain et al., Influence of Ni substitution on structural, morphological, dielectric, magnetic and optical properties of Cu–Zn ferrite by double sintering sol–gel technique, J. Adv. Dielect. 09 (02), 1950020 (2019). DOI: 10.1142/S2010135X19500206.
  • A. Sutka, and G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Front. Mater. Sci. 6 (2), 128 (2012). DOI: 10.1007/s11706-012-0167-3.
  • M. Almessiere et al., The impact of Zr substituted Sr hexaferrite: Investigation on structure, optic and magnetic properties, Results Phys. 13, 102244 (2019). DOI: 10.1016/j.rinp.2019.102244.
  • M. Waqar et al., Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials, Appl. Phys. A. 124 (4), 1 (2018). DOI: 10.1007/s00339-018-1717-z.
  • E. Roohani, H. Arabi, and R. Sarhaddi, Influence of nickel substitution on crystal structure and magnetic properties of strontium ferrite preparation via sol-gel auto-combustion route, Int. J. Mod. Phys. B. 32 (01), 1750271 (2018). DOI: 10.1142/S021797921750271X.
  • J. Slama, and A. Gruskova, Properties of M–type barium ferrite doped by selected ions, J. Electr. Eng. 56 (1), 21 (2005).
  • K. Rewatkar, G. Prakash, and G. Kulkarni, Synthesis and characterization of the CaFeXAlx( CuTi)6-xO19 hexaferrite system, Mater. Lett. 28 (4-6), 365 (1996). DOI: 10.1016/0167-577X(96)00087-0.
  • P. Behera, and S. Ravi, Effect of Ni doping on structural, magnetic and dielectric properties of M-type barium hexaferrite, Solid State Sci. 89, 139 (2019). DOI: 10.1016/j.solidstatesciences.2019.01.003.
  • S. El-Sayed et al., Effect of trivalent ion substitution on the physical properties of M-type hexagonal ferrites, Part. Sci. Technol. 32 (1), 39 (2014). DOI: 10.1080/02726351.2013.793759.
  • B. S. Satone, and K. G. Rewatkar, A Comparative study on structural and magnetic properties of La, Cr and Al doped M-type Calcium hexagonal nano ferrites prepared by sol-gel auto-combustion method, International Journal of Modern Trends in Engineering and Research 2 (8), 180 (2015).
  • K. Rehman et al., Structural, morphological and magnetic properties of Sr0.3 La0.48 Ca0.25 n[Fe20.4/n O3 ]Co0.4 (n = 5.5, 5.6, 5.7, 5.8, 5.9, 6.0) hexaferrites prepared by facile ceramic route methodology, J. Magn. Magn. Mater. 449, 360 (2018). DOI: 10.1016/j.jmmm.2017.10.051.
  • N. Sapna, Budhiraja, V. Kumar, and S. Singh, X-ray analysis of NiFe2O4 nanoparticles by Williamson-Hall and size-strain plot method, Journal of Advanced Physics 6 (4), 492 (2017). DOI: 10.1166/jap.2017.1363.
  • S. Mustapha et al., Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles, Adv. Nat. Sci: Nanosci. Nanotechnol. 10 (4), 045013 (2019). DOI: 10.1088/2043-6254/ab52f7.
  • H. Irfan, M. Racik K, and S. Anand, Microstructural evaluation of CoAl2O4 nanoparticles by Williamson–Hall and size–strain plot methods, J. Asian Ceram. Soc. 6 (1), 54 (2018). DOI: 10.1080/21870764.2018.1439606.
  • V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, J. Theor. Appl. Phys. 6 (1), 6 (2012). DOI: 10.1186/2251-7235-6-6.
  • M. Augustin, and T. Balu, Estimation of lattice stress and strain in zinc and manganese ferrite nanoparticles by Williamson–Hall and size-strain plot methods, Int. J. Nanosci. 16 (03), 1650035 (2017). DOI: 10.1142/S0219581X16500356.
  • A. Khorsand Zak et al., X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sci. 13 (1), 251 (2011). DOI: 10.1016/j.solidstatesciences.2010.11.024.
  • M. Bodke et al., Estimation of accurate size, lattice strain using Williamson-Hall models, SSP and TEM of Al doped ZnO nanocrystals, Matériaux & Techniques 106 (6), 602 (2018). DOI: 10.1051/mattech/2018055.
  • K. Aly et al., Lattice strain estimation for CoAl2O4 nano-particles using Williamson-Hall analysis, J. Alloys Compd. 676, 606 (2016). DOI: 10.1016/j.jallcom.2016.03.213.
  • N. Rezlescu et al., Comparative study between catalyst properties Of simple spinel ferrite powders prepared by self-combustion route, Romanian Reports in Physics 65 (4), 1348 (2013).
  • S. Dafe, and M. Salunkhe, FTIR study of diamagnetic Mg2+ substituted Ni2Z hexaferrite, International Journal of Engineering Research and Technology 4 (11), 345 (2015). https://doi.org/https://doi.org/10.17577/ijertv4is110287
  • Y. Yang, and X. Liu, Substitution effects of calcium to microstructures and magnetic properties of Sr0·70–xCaxLa0·30Fe11·72Cu0·28O19 hexaferrites, Mater. Technol. 29 (5), 307 (2014). DOI: 10.1179/1753555714Y.0000000164.
  • C. Mamatha, M. Krishnaiah, and B. Sreedhar, Enhancement of magnetic properties of calcium hexaferrites with aluminium substitution, Procedia Eng. 215 (1), 130 (2017). DOI: 10.1016/j.proeng.2017.11.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.