245
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vanadium Oxide Thermal Sensitive Thin Film with TiN Absorbing Layer for Uncooled Infrared Bolometer

, , , , , , , , & show all
Pages 43-49 | Received 02 Sep 2020, Accepted 15 Feb 2021, Published online: 30 Jun 2021

References

  • H. Takeya et al., Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide, Sci. Rep. 8 (1), 12764 (2018). DOI: 10.1038/s41598-018-30944-2.
  • H.-Y. Lee et al., Investigated performance of uncooled tantalum-doped VOx floating-type microbolometers, Appl. Surf. Sci. 354, 106 (2015). DOI: 10.1016/j.apsusc.2015.03.008.
  • A. Rogalski, Recent progress in infrared detector technologies, Infrared Phys. Technol. 54 (3), 136 (2011). DOI: 10.1016/j.infrared.2010.12.003.
  • P. D. Raj, S. Gupta, and M. Sridharan, Nanostructured V2O5 thin films deposited at low sputtering power, Mater. Sci. Semicond. Process. 39, 426 (2015). DOI: 10.1016/j.mssp.2015.04.054.
  • A. Sešek et al., Antenna–coupled Ti–microbolometers for high–sensitivity terahertz imaging, Sens. Actuators, A 2681, 133 (2017). DOI: 10.1016/j.sna.2017.11.029.
  • M. Lutful Hai et al., Amorphous SixGeyO1−x−y thin films for uncooled infrared microbolometers, Infrared Phys. Technol. 95, 227 (2018). DOI: 10.1016/j.infrared.2018.10.010.
  • I.-K. Kang et al., Sputtering pressure dependent bolometric properties of Ni1−xO thin films for uncooled bolometer applications, Ceram. Int. 43 (12), 9498 (2017). DOI: 10.1016/j.ceramint.2017.04.131.
  • B. Wang et al., Research on VOx uncooled infrared bolometer based on porous silicon, Front. Optoelectron. 5 (3), 292 (2012). DOI: 10.1007/s12200-012-0224-7.
  • M. Alhussein and S. I. Haider, Simulation and analysis of uncooled microbolometer for serial readout architecture, J. Sens. 2016, 1 (2016). DOI: 10.1155/2016/9751056.
  • V. Svatoš et al., Precise determination of thermal parameters of a microbolometer, Infrared Phys. Technol. 93, 286 (2018). DOI: 10.1016/j.infrared.2018.07.037.
  • S. Tao et al., La0.67(Ca0.24Sr0.09)MnO3: XAg2O (0 ≤ x ≤ 0.25) composites with improved room-temperature TCR and MR for advanced uncooling infrared bolometers and magnetic sensors, Appl. Surf. Sci. 4931, 448 (2019).
  • C. Łukasz, K. Małgorzata, and M. Piotr, Low-frequency noise limitations of InAsSb and HgCdTe-based infrared detectors, Sens. Actuators, A 30515, 111908 (2020).
  • A. V. Voitsekhovskii et al., Electrical characterization of insulator–semiconductor systems based on graded band gap MBE HgCdTe with atomic layer deposited Al2O3 films for infrared detector passivation, Vacuum 158, 136 (2018). DOI: 10.1016/j.vacuum.2018.09.054.
  • R. K. Bhan, and V. Dhar, Recent infrared detector technologies, applications, trends, and development of HgCdTe based cooled infrared focal plane arrays and their characterization, Opto-Electron. Rev. 27 (2), 174 (2019). DOI: 10.1016/j.opelre.2019.04.004.
  • F. Li et al., HgCdTe mid-Infrared photo response enhanced by monolithically integrated meta-lenses, Sci. Rep. 10 (1), 1 (2020). DOI: 10.1038/s41598-020-62433-w.
  • Z. –Y. Wu et al., Infrared response of vanadium oxide (VOx)/SiNx/reduced graphene oxide (rGO) composite microbolometer, Microelectron. Reliab. 91, 313 (2018). DOI: 10.1016/j.microrel.2018.02.003.
  • B. Wang et al., Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer, Infrared Phys. Technol. 57, 8 (2013). DOI: 10.1016/j.infrared.2012.10.006.
  • D. Z. Ting et al., Advances in III-V semiconductor infrared absorbers and detectors, Infrared Phys. Technol. 97, 210 (2019). DOI: 10.1016/j.infrared.2018.12.034.
  • J. Park, Y. Yanagida, and T. Hatsuzawa, Fabrication of p-type porous silicon using double tank electrochemical cell with halogen and LED light sources, Sens. Actuators B-Chem. 233, 136 (2016). DOI: 10.1016/j.snb.2016.04.058.
  • H. Abdollahi, H. Hajghassem, and S. Mohajerzadeh, Simple fabrication of an uncooled Al/SiO2 microcantilever IR detector based on bulk micromachining, Microsyst. Technol. 20 (3), 387 (2014). DOI: 10.1007/s00542-013-1854-4.
  • E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.