Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 233, 2023 - Issue 1
56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Site preference and effect on shear deformation of co-alloying elements addition to γ′-Ni3Al phase in Ni-based single crystal superalloys

ORCID Icon, , , , &
Pages 174-186 | Received 18 Jun 2022, Accepted 09 Mar 2023, Published online: 10 May 2023

References

  • H. Long et al., Microstructural and compositional design of Ni-based single crystalline superalloys: A review, J. Alloys Compd. 743, 203 (2018). DOI: 10.1016/j.jallcom.2018.01.224.
  • Y.-J. Wang, and C.-Y. Wang, Influence of the alloying element Re on the ideal tensile and shear strength of γ′-Ni3A., Scr. Mater. 61, 197 (2009). DOI: 10.1016/j.scriptamat.2009.03.042.
  • P. Peng et al., First-principles study of the properties of Ni/Ni3Al interface doped with B or P., Mater. Sci. Eng. A 416, 169 (2006). DOI: 10.1016/j.msea.2005.10.019.
  • M. Chen, and C.-Y. Wang, First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W)., Scr. Mater. 60, 659 (2009). DOI: 10.1016/j.scriptamat.2008.12.040.
  • C. Jiang, and B. Gleeson, Site preference of transition metal elements in Ni3Al., Scr. Mater. 55, 433 (2006). DOI: 10.1016/j.scriptamat.2006.05.016.
  • Y. Rao et al., Segregation of alloying elements to planar faults in γ′-Ni3Al., Acta Mater. 148, 173 (2018). DOI: 10.1016/j.actamat.2018.01.055.
  • K. Kumar, R. Sankarasubramanian, and U. V. Waghmare, Tuning planar fault energies of Ni3Al with substitutional alloying: First-principles description for guiding rational alloy design., Scr. Mater. 142, 74 (2018). DOI: 10.1016/j.scriptamat.2017.08.021.
  • A. Breidi, J. Allen, and A. Mottura, First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloy., Acta Mater. 145, 97 (2018). DOI: 10.1016/j.actamat.2017.11.042.
  • X. Zhang, and C.-Y. Wang, First-principles study of vacancy formation and migration in clean and Re-doped γ′-Ni3Al, Acta Mater. 57, 224 (2009). DOI: 10.1016/j.actamat.2008.08.052.
  • R. C. Reed, T. Tao, and N. Warnken, Alloys-By-Design: Application to nickel-based single crystal superalloys., Acta Mater. 57, 5898 (2009). DOI: 10.1016/j.actamat.2009.08.018.
  • C. Jiang, D. J. Sordelet, and B. Gleeson, Site preference of ternary alloying elements in Ni3Al: A first-principles study., Acta Mater. 54, 1147 (2006). DOI: 10.1016/j.actamat.2005.10.039.
  • W. Zhao, Z. Sun, and S. Gong, Vacancy mediated alloying strengthening effects on γ/γ′ interface of Ni-based single crystal superalloys: A first-principles study., Acta Mater. 135, 25 (2017). DOI: 10.1016/j.actamat.2017.05.074.
  • D. Blavette, P. Caron, and T. Khan, An atom probe investigation of the role of rhenium additions in improving creep resistance of Ni-base superalloys., Scr. Metall. 20, 1395 (1986). DOI: 10.1016/0036-9748(86)90103-1.
  • Y. Chen et al., Impact of correlative defects induced by double Re-addition on the ideal shear strength of γ′-Ni3Al phases., Comput. Mater. Sci. 152, 408 (2018). DOI: 10.1016/j.commatsci.2018.06.014.
  • A. Sato et al., The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys., Scr. Mater. 54, 1679 (2006).
  • Q. Wu, and S. Li, Alloying element additions to Ni3Al: Site preferences and effects on elastic properties from first-principles calculations., Comput. Mater. Sci. 53, 436 (2012).
  • C. P. Liu et al., Effect of rhenium and ruthenium on the deformation and fracture mechanism in nickel-based model single crystal superalloys during the in-situ tensile at room temperature. Mater. Sci. Eng. A 682, 90 (2017).
  • A. Kumar et al., An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni3Al, Comput. Mater. Sci. 101, 39 (2015).
  • C. M. F. Rae, and R. C. Reed, The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 49, 4113 (2001).
  • Yu S. Mitrokhin et al., Site preference of ternary alloying elements in Ni3Al-X (X = Co, Nb): a first-principles calculations in combination with XPS study, Site preference of ternary alloying elements in Ni3Al-X (X = Co, Nb): a first-principles calculations in combination with XPS study, Mater. Res. Express 4, 025016 (2017).
  • C. Booth-Morrison et al., Chromium and tantalum site substitution patterns in Ni3Al(L12) γ′-precipitates, Appl. Phys. Lett. 93 (2008).
  • Y. Tu, Z. Mao, and D. N. Seidman, Phase-partitioning and site-substitution patterns of molybdenum in a model Ni-Al-Mo superalloy: An atom-probe tomographic and first-principles study, Appl. Phys. Lett. 101, 121910 (2012).
  • Y. Zhou et al., The partitioning and site preference of rhenium or ruthenium in model nickelbased superalloys: An atom-probe tomographic and first-principles study, Appl. Phys. Lett. 93, 171905 (2008).
  • P. A. J. Bagot et al., An Atom Probe Tomography study of site preference and partitioning in a nickel-based superalloy, Acta Mater. 125, 156 (2017).
  • Y. Wang, Z. K. Liu, and L. Q. Chen, Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater. 52, 2665 (2004).
  • D. Roundy et al., Ideal Shear Strengths of fcc Aluminum and Copper, Phys. Rev. Lett. 82, 2713 (1999).
  • M.-L. Huang, and C.-Y. Wang, Effects of boron and carbon on the ideal strength of Ni solution and Ni3Al intermetallics: A first-principles study of tensile deformation., Comput. Mater. Sci. 140, 140 (2017).
  • X. Wu, and C. Wang, Effect of the alloying element on the temperature-dependent ideal shear strength of γ′-Ni3Al. RSC Adv. 6, 20551 (2016).
  • W. Zhao, Z. Sun, and S. Gong, Synergistic effect of co-alloying elements on site preferences and elastic properties of Ni3Al: A first-principles study. Intermetallics 65, 75 (2015).
  • M. Chaudhari et al., Site preference and interaction energies of Co and Cr in gamma prime Ni3Al: a first-principles study, Modell. Simul. Mater. Sci. Eng. 21 (2013).
  • G. Kresse, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B (Condensed Matter) 54, 11169 (1996).
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • M. Ernzerhof, and G. E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110, 5029 (1999).
  • B. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59, 7413 (1999).
  • P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
  • G. Kresse, and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
  • S. L. Shang et al., Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. J. Phys. Condens. Matter 24, 155402[Database] (2012).
  • Z. Wen et al., Z. Wen et al., Theoretical Calculations of the Ideal Strength of Ni, NiAl and Ni3Al in Tension and Shear, Sci. Adv. Mater. 10, 1420 (2018). Sci. Adv. Mater. 10, 1420 (2018).
  • R. C. Reed, Line 564-R39: R. C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, 2006. 372. Cambridge University Press, 2006. 372.
  • M. Wen, and C.-Y. Wang, Transition-metal alloying of γ′–Ni3Al: Effects on the ideal uniaxial compressive strength from first-principles calculations, Phys. Rev. B 97, 024101 (2018).
  • M. Chaudhari et al., Site occupancy of chromium in the γ′-Ni3Al phase of nickel-based superalloys: a combined 3D atom probe and first-principles study. Philos. Mag. Lett. 92, 495 (2012).
  • Y.-J. Li et al., Strengthening of γ-TiAl-Nb by short-range ordering of point defects. Intermetallics 19, 793 (2011).
  • J. Xu, T. Oguchi, and A. J. Freeman, Solid-solution strengthening: Substitution of V in Ni3Al and structural stability of Ni3(Al,V), Phys. Rev. B Condens. Matter 36 (8), 4186 (1987). DOI: 10.1103/physrevb.36.4186.
  • Z. Song et al., First principles calculation on the newly superhard materials of W-B-C ternary system. First principles calculation on the newly superhard materials of W-B-C ternary system, Solid State Commun. 301, 113705 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.