Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 235, 2023 - Issue 1
192
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evolution of the Phase and Hydrogen Storage Properties of New-Type VTiCrFeMn High-Entropy Alloy Prepared via Mechanical Alloying

, , , , &
Pages 17-28 | Received 19 Aug 2022, Accepted 09 Mar 2023, Published online: 22 May 2023

References

  • Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, Int. J. Hydrogen Energy 44 (33), 18179 (2019). DOI: 10.1016/j.ijhydene.2019.05.119.
  • A. Züttel, Materials for hydrogen storage, Mater. Today 6 (9), 24 (2003). DOI: 10.1016/S1369-7021(03)00922-2.
  • G. Barkhordarian et al., Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides, J. Alloys Compd. 440 (1–2), L18 (2007). DOI: 10.1016/j.jallcom.2006.09.048.
  • H. Wang et al., Near ambient condition hydrogen storage in a synergized tricomponent hydride system, Adv. Energy Mater. 7 (13), 1602456 (2017). DOI: 10.1002/aenm.201602456.
  • M. Heere et al., Hydrogen sorption in erbium borohydride composite mixtures with LiBH4 and/or LiH, Inorganics 5 (2), 31 (2017). DOI: 10.3390/inorganics5020031.
  • L. F. Chanchetti et al., Technological forecasting of hydrogen storage materials using patent indicators, Int. J. Hydrogen Energy 41 (41), 18301 (2016). DOI: 10.1016/j.ijhydene.2016.08.137.
  • M. Hirscher et al., Materials for hydrogen-based energy storage-past, recent progress and future outlook, J. Alloys Compd. 827, 153548 (2020). DOI: 10.1016/j.jallcom.2019.153548.
  • J. Huot et al., Mechanochemistry of metal hydrides: Recent advances, Materials 12 (17), 2778 (2019). DOI: 10.3390/ma12172778.
  • T. Yang et al., Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy, Int. J. Hydrogen Energy 41 (4), 2689 (2016). DOI: 10.1016/j.ijhydene.2015.12.099.
  • Y. F. Kao et al., Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys, Int. J. Hydrogen Energy 35 (17), 9046 (2010). DOI: 10.1016/j.ijhydene.2010.06.012.
  • M. M. Nygård et al., Counting electrons-A new approach to tailor the hydrogen sorption properties of high-entropy alloys, Acta Mater. 175, 121 (2019). DOI: 10.1016/j.actamat.2019.06.002.
  • J. Montero et al., TiVZrNb multi-principal-element alloy: Synthesis optimization, structural, and hydrogen sorption properties, Molecules 24 (15), 2799 (2019). DOI: 10.3390/molecules24152799.
  • S. K. Chen et al., Hydrogen storage of C14-CruFevMnwTixVyZrz alloys, Mater, Chem. Phys. 210, 336 (2018). DOI: 10.1016/j.matchemphys.2017.08.008.
  • C. Zlotea et al., Hydrogen sorption in TiZrNbHfTa high entropy alloy, J. Alloys Compd. 775, 667 (2019). DOI: 10.1016/j.jallcom.2018.10.108.
  • P. Edalati et al., Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi, Scr. Mater. 178, 387 (2020). DOI: 10.1016/j.scriptamat.2019.12.009.
  • Z. N. Li et al., Characterization of Mg-20 wt% Ni-Y hydrogen storage composite prepared by reactive mechanical alloying, Int. J. Hydrogen Energy 32 (12), 1869 (2007). DOI: 10.1016/j.ijhydene.2006.09.022.
  • K. R. Cardoso et al., Hydrogen storage in MgAlTiFeNi high entropy alloy, J. Alloys Compd. 858, 158357 (2021). DOI: 10.1016/j.jallcom.2020.158357.
  • N. Mahmoudi, A. Kaflou, and A. Simchi, Hydrogen desorption properties of MgH2-TiCr1.2Fe0.6 nanocomposite prepared by high-energy mechanical alloying, J. Power Sources 196 (10), 4604 (2011). DOI: 10.1016/j.jpowsour.2011.01.001.
  • X. Yang, and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys, Mater, Chem. Phys. 132 (2–3), 233 (2012). DOI: 10.1016/j.matchemphys.2011.11.021.
  • J. Y. He et al., Effect of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62, 105 (2014). DOI: 10.1016/j.actamat.2013.09.037.
  • Y. F. Ye et al., The generalized thermodynamic rule for phase selection in multicomponent alloys, Intermetallics 59, 75 (2015). DOI: 10.1016/j.intermet.2014.12.011.
  • Y. F. Ye et al., Design of high entropy alloys: A single-parameter thermodynamic rule, Scr. Mater. 104, 53 (2015). DOI: 10.1016/j.scriptamat.2015.03.023.
  • G. A. Mansoori et al., Equilibrium thermodynamic properties of the mixture of hard spheres, J. Chem. Phys. 54 (4), 1523 (1971). DOI: 10.1063/1.1675048.
  • R. B. Strozi et al., An approach to design single BCC Mg-containing high entropy alloys for hydrogen storage applications, Int. J. Hydrogen Energy 46 (50), 25555 (2021). DOI: 10.1016/j.ijhydene.2021.05.087.
  • A. Takeuchi, and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (12), 2817 (2005). DOI: 10.2320/matertrans.46.2817.
  • D. B. Miracle, and O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122, 448 (2017). DOI: 10.1016/j.actamat.2016.08.081.
  • R. Griessen, and T. Riesterer, Heat of formation models, in Topics in Applied Physics: Hydrogen in Intermetallic Compounds I, edited by L. Schlapbach (1988), Vol. 64, pp. 219–284. DOI: 10.1007/3540183337_13.
  • F. S. Yang et al., Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review, Int. J. Hydrogen Energy 47 (21), 11236 (2022). DOI: 10.1016/j.ijhydene.2022.01.141.
  • Y. Zhang et al., Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (6), 534 (2008). DOI: 10.1002/adem.200700240.
  • E. Akiba, and Y. Nakamura, Hydrogenation properties and crystal structures of Ti-Mn-V BCC solid solution alloys, Met. Mater. Int. 7, 165 (2001). DOI: 10.1007/BF03026955.
  • P. C. Li et al., Electronic structure regulation toward the improvement of the hydrogenation properties of TiZrHfMoNb high-entropy alloy, J. Alloys Compd. 905, 164150 (2022). DOI: 10.1016/j.jallcom.2022.164150.
  • P. E. de Jongh, Hydrogen storage: Keeping out the oxygen, Nat. Mater. 10 (4), 265 (2011). DOI: 10.1038/nmat2995.
  • M. Williams et al., Chemical surface modification for the improvement of the hydrogenation kinetics and poisoning resistance of TiFe, J. Alloys Compd. 509 (S2), S770 (2011). DOI: 10.1016/j.jallcom.2010.11.063.
  • D. Pukazhselvan et al., Formation of Mg-Nb-O rock salt structures in a series of mechanochemically activated MgH2+nNb2O5 (n = 0.083-1.50) mixtures, Int. J. Hydrogen Energy 41 (4), 2677 (2016). DOI: 10.1016/j.ijhydene.2015.12.077.
  • O. Friedrichs et al., In situ energy-dispersive XAS and XRD study of the superior hydrogen storage system MgH2/Nb2O5, J. Phys. Chem. C 111 (28), 10700 (2007). DOI: 10.1021/jp0675835.
  • J. J. Liu et al., Microstructure and hydrogen storage properties of Ti-V-Cr based BCC-type high entropy alloys, Int. J. Hydrogen Energy 46 (56), 28709 (2021). DOI: 10.1016/j.ijhydene.2021.06.137.
  • A. Khawam, and D. R. Flanagan, Solid-state kinetic models: Basics and mathematical fundamentals, J. Phys. Chem. B 110 (35), 17315 (2006). DOI: 10.1021/jp062746a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.