Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Silk Fibroin/Amino Acid Hybrid Organic Piezoelectric-Triboelectric Nanogenerator

, , , , , & show all
Pages 101-114 | Received 15 Jan 2023, Accepted 24 Apr 2023, Published online: 29 Sep 2023

References

  • N. Gogurla, and S. Kim, Self-powered and imperceptible electronic tattoos based on silk protein nanofiber and carbon nanotubes for human–machine interfaces, Adv. Energy Mater. 11 (29), 2100801 (2021). DOI: 10.1002/aenm.202100801.
  • D. Son et al., An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network, Nat. Nanotechnol. 13 (11), 1057 (2018). DOI: 10.1038/s41565-018-0244-6.
  • F. Sheng et al., Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors, ACS Appl. Mater. Interfaces. 13 (37), 44868 (2021). DOI: 10.1021/acsami.1c12378.
  • Y. Liu et al., Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces, Sci. Adv. 2 (11), e1601185 (2016). DOI: 10.1126/sciadv.1601185.
  • Q. Hua et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing, Nat. Commun. 9 (1), 244 (2018). DOI: 10.1038/s41467-017-02685-9.
  • M. Li, A. L. Porter, and Z. L. Wang, Evolutionary trend analysis of nanogenerator research based on a novel perspective of phased bibliographic coupling, Nano Energy 34, 93 (2017). DOI: 10.1016/j.nanoen.2017.02.020.
  • F.-R. Fan, Z-q Tian, and Z. L. Wang, Flexible triboelectric generator, Nano Energy 1 (2), 328 (2012). DOI: 10.1016/j.nanoen.2012.01.004.
  • Y. Chi et al., Rice paper-based biodegradable triboelectric nanogenerator, Microelectron. Eng. 216, 111059 (2019). DOI: 10.1016/j.mee.2019.111059.
  • K. Xia et al., Milk-based triboelectric nanogenerator on paper for harvesting energy from human body motion, Nano Energy 56, 400 (2019). DOI: 10.1016/j.nanoen.2018.11.071.
  • K. Xia et al., A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring, Nano Energy 60, 61 (2019). DOI: 10.1016/j.nanoen.2019.03.050.
  • N. Pinpru et al., Synthesis and preparation of bacterial cellulose/calcium hydrogen phosphate composite film for mulching film application, Mater. Today: Proc. 47, 3529 (2021). DOI: 10.1016/j.matpr.2021.03.543.
  • T. Charoonsuk et al., Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure, Nano Energy 89, 106430 (2021). DOI: 10.1016/j.nanoen.2021.106430.
  • Z. Lin, J. Chen, and J. Yang, Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source, J. Nanomater. 2016, 5651613 (2016).
  • H.-Y. Mi et al., Silk and Silk Composite Aerogel-Based Biocompatible Triboelectric Nanogenerators for Efficient Energy Harvesting, Ind. Eng. Chem. Res. 59 (27), 12399 (2020). DOI: 10.1021/acs.iecr.0c01117.
  • W. Jiang et al., Fully Bioabsorbable Natural-Materials-Based Triboelectric Nanogenerators, Adv. Mater. 30 (32), 1801895 (2018). DOI: 10.1002/adma.201801895.
  • J. Heo et al., Electro-inductive effect: electrodes as functional groups with tunable electronic properties, Science 370 (6513), 214 (2020). DOI: 10.1126/science.abb6375.
  • H.-X. Zhang, J. Brugger, and B. Kim, A silk-fibroin-based transparent triboelectric generator suitable for autonomous sensor network, Nano Energy 20, 37 (2016). DOI: 10.1016/j.nanoen.2015.11.036.
  • C. Liu et al., Toward large-scale fabrication of triboelectric nanogenerator (TENG) with silk-fibroin patches film via spray-coating process, Nano Energy 41, 359 (2017). DOI: 10.1016/j.nanoen.2017.09.038.
  • Y. Luo et al., Triboelectric nanogenerators with porous and hierarchically structured silk fibroin films via water electrospray-etching technology, Nano Energy 75, 104974 (2020). DOI: 10.1016/j.nanoen.2020.104974.
  • M. Ibrahim et al., Surface engineering for enhanced triboelectric nanogenerator, Nanoenergy Advances 1 (1), 58 (2021). DOI: 10.3390/nanoenergyadv1010004.
  • J. Chen et al., Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film, ACS Appl. Mater. Interfaces. 8 (1), 736 (2016). DOI: 10.1021/acsami.5b09907.
  • S. Pongampai et al., Triboelectric-piezoelectric hybrid nanogenerator based on BaTiO3-Nanorods/Chitosan enhanced output performance with self-charge-pumping system, Composites Part B: Engineering 208, 108602 (2021). DOI: 10.1016/j.compositesb.2020.108602.
  • K. N. Kim et al., Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles, Nano Energy 14, 87 (2015). DOI: 10.1016/j.nanoen.2015.01.004.
  • E. S. Hosseini et al., Glycine–Chitosan-based flexible biodegradable piezoelectric pressure sensor, ACS Appl. Mater. Interfaces. 12 (8), 9008 (2020). DOI: 10.1021/acsami.9b21052.
  • D. Isakov et al., In situ observation of the humidity controlled polymorphic phase transformation in glycine microcrystals, Crystal Growth & Design 14 (8), 4138 (2014). DOI: 10.1021/cg500747x.
  • S. Guerin, S. A. M. Tofail, and D. Thompson, Organic piezoelectric materials: Milestones and potential, NPG Asia Mater. 11 (1), 10 (2019). DOI: 10.1038/s41427-019-0110-5.
  • S. Pilling et al., The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions, Astrobiology 13 (1), 79 (2013). DOI: 10.1089/ast.2012.0877.
  • S. Z. Ali Ahamed et al., Spectroscopic and thermal studies of γ-glycine crystal grown from potassium bromide for optoelectronic applications, Arabian J. Chem. 6 (4), 429 (2013). DOI: 10.1016/j.arabjc.2011.06.006.
  • M. E. Peter et al., Growth and characterization of nonlinear optical crystal Gamma glycine by the additive of lithium bromide, Optics & Laser Technology 106, 321 (2018). DOI: 10.1016/j.optlastec.2018.04.036.
  • K. Ambujam et al., Crystal growth, optical, mechanical and electrical properties of organic NLO material γ‐glycine, Cryst. Res. Technol. 41 (7), 671 (2006). DOI: 10.1002/crat.200510647.
  • S. A. Azhagan, and S. Ganesan, Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals, Arabian J. Chem. 10, S2615 (2017). DOI: 10.1016/j.arabjc.2013.09.041.
  • L. Ouyang, Z. Tengfei, and L. Shen, Direct observation of α- to β-glycine transformation during ionic liquid mediated crystallization process., Cryst. Eng. Comm. 20 (19), 2705 (2018). DOI: 10.1039/C7CE02247F.
  • E. Kamalha et al., FTIR and WAXD study of regenerated silk fibroin, AMR. 677, 211 (2013). DOI: 10.4028/www.scientific.net/AMR.677.211.
  • K. Numata et al., Crystal structure and physical properties of Antheraea yamamai silk fibers: Long poly(alanine) sequences are partially in the crystalline region, Polymer 77, 87 (2015). DOI: 10.1016/j.polymer.2015.09.025.
  • H. Patnam et al., Piezo/triboelectric hybrid nanogenerators based on Ca-doped barium zirconate titanate embedded composite polymers for wearable electronics, Compos. Sci. Technol. 188, 107963 (2020). DOI: 10.1016/j.compscitech.2019.107963.
  • S. Guerin et al., Control of piezoelectricity in amino acids by supramolecular packing, Nat. Mater. 17 (2), 180 (2018). DOI: 10.1038/nmat5045.
  • A. Heredia et al., Nanoscale ferroelectricity in crystalline γ-glycine, Adv. Funct. Mater. 22 (14), 2996 (2012). DOI: 10.1002/adfm.201103011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.