Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
96
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric and Improved Energy-Storage Properties in A-Site Nd3+ Doped Lead-Free 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 Ceramics

, , , &
Pages 160-172 | Received 15 Jan 2023, Accepted 29 Apr 2023, Published online: 29 Sep 2023

References

  • I. Dincer and C. Acar, A review on clean energy solutions for better sustainability, Int. J. Energy Res. 39 (5), 585 (2015). DOI: 10.1002/er.3329.
  • I. Dincer, Renewable energy and sustainable development: a crucial review, Renew. Sustain. Energy Rev. 4 (2), 157 (2000). DOI: 10.1016/S1364-0321(99)00011-8.
  • Z.-M. Dang et al., Dielectric polymer materials for electrical energy storage and dielectric physics: A guide, J. Adv. Phys. 4 (4), 302 (2015). DOI: 10.1166/jap.2015.1203.
  • T. Mahlia et al., A review of available methods and development on energy storage; technology update, Renew. Sustain. Energy Rev. 33, 532 (2014). DOI: 10.1016/j.rser.2014.01.068.
  • M. Maraj et al., Dielectric and energy storage properties of Ba(1−x) CaxZryTi(1−y)O3 (BCZT): a review, Materials 12 (21), 3641 (2019). DOI: 10.3390/ma12213641.
  • F. Li et al., Recent progress of ecofriendly perovskite-type dielectric ceramics for energy storage applications, J. Adv. Dielectr. 08 (06), 1830005 (2018). DOI: 10.1142/S2010135X18300050.
  • P. Zhao et al., High‐performance relaxor ferroelectric materials for energy storage applications, Adv. Energy Mater. 9 (17), 1803048 (2019). DOI: 10.1002/aenm.201803048.
  • Q. Li et al., Flexible high-temperature dielectric materials from polymer nanocomposites, Nature 523 (7562), 576 (2015). DOI: 10.1038/nature14647.
  • X. Hao, A review on the dielectric materials for high energy-storage application, J. Adv. Dielectr. 03 (01), 1330001 (2013). DOI: 10.1142/S2010135X13300016.
  • P. Hu et al., Topological‐structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density, Adv. Funct. Mater. 24 (21), 3172 (2014). DOI: 10.1002/adfm.201303684.
  • H. Zhang et al., Polymer matrix nanocomposites with 1D ceramic nanofillers for energy storage capacitor applications, ACS Appl. Mater. Interfaces 12 (1), 1 (2020). DOI: 10.1021/acsami.9b15005.
  • J. Wei, T. Yang, and H. Wang, Excellent energy storage and charge-discharge performances in PbHfO3 antiferroelectric ceramics, J. Eur. Ceram. Soc. 39 (2–3), 624 (2019). DOI: 10.1016/j.jeurceramsoc.2018.09.039.
  • C.-W. Tao et al., Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3: ZnO relaxor ferroelectric composites with high breakdown electric field and large energy storage properties, J. Eur. Ceram. Soc. 38 (15), 4946 (2018). DOI: 10.1016/j.jeurceramsoc.2018.07.006.
  • D. Zheng, and R. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range, J. Eur. Ceram. Soc. 37 (1), 413 (2017). DOI: 10.1016/j.jeurceramsoc.2016.08.021.
  • N. Zhao et al., Temperature‐stable dielectric and energy storage properties of La(Ti0.5Mg0.5)O3‐doped (Bi0.5, Na0.5)TiO3‐(Sr0.7Bi0.2)TiO3 lead‐free ceramics, J. Am. Ceram. Soc. 101 (12), 5578 (2018). DOI: 10.1111/jace.15870.
  • X. Yang et al., High energy storage density and ultrafast discharge in lead lutetium niobate based ceramics, J. Mater. Chem. A 7 (14), 8414 (2019). DOI: 10.1039/C9TA00463G.
  • P. Gao et al., New antiferroelectric perovskite system with ultrahigh energy-storage performance at low electric field, Chem. Mater. 31 (3), 979 (2019). DOI: 10.1021/acs.chemmater.8b04470.
  • K. J. Puttlitz and G. T. Galyon, Impact of the ROHS Directive on high-performance electronic systems: Part II: key reliability issues preventing the implementation of lead-free solders, J. Mat. Sci.: Mat. Elect. 18 (2007) 347–365.
  • F. Pang et al., Ultrahigh energy storage characteristics of sodium niobate-based ceramics by introducing a local random field, ACS, ACS Sustainable Chem. Eng. 8 (39), 14985 (2020). DOI: 10.1021/acssuschemeng.0c05265.
  • H. Yang et al., Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics, Appl. Phys. Lett. 111 (25), 253903 (2017). DOI: 10.1063/1.5000980.
  • T. Shao et al., Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials, J. Mater. Chem. A 5 (2), 554 (2017). DOI: 10.1039/C6TA07803F.
  • W.-B. Li, D. Zhou, and L.-X. Pang, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics, Appl. Phys. Lett. 110, 132902 (2017).
  • J. Yin et al., Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics, J. Mater. Chem. A 6 (21), 9823 (2018). DOI: 10.1039/C8TA00474A.
  • K. Han et al., Ultrahigh energy-storage density in A-/B-site co-doped AgNbO3 lead-free antiferroelectric ceramics: Insight into the origin of antiferroelectricity, J. Mater. Chem. A 7 (46), 26293 (2019). DOI: 10.1039/C9TA06457E.
  • S. Lanfredi, M. Lente, and J. Eiras, Phase transition at low temperature in NaNbO3 ceramic, Appl. Phys. Lett. 80 (15), 2731 (2002). DOI: 10.1063/1.1470260.
  • H. Qi et al., Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops, J. Eur. Ceram. Soc. 39 (13), 3703 (2019). DOI: 10.1016/j.jeurceramsoc.2019.05.043.
  • H. Shimizu et al., Advantages of low partial pressure of oxygen processing of alkali niobate: NaNbO3, J. Am. Ceram. Soc. 97 (6), 1791 (2014). DOI: 10.1111/jace.12815.
  • H. Guo, H. Shimizu, and C. A. Randall, Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics, Appl. Phys. Lett. 107, 112904 (2015).
  • X. Tan et al., Double hysteresis loops at room temperature in NaNbO3-based lead-free antiferroelectric ceramics, Mater. Res. Lett. 6 (3), 159 (2018). DOI: 10.1080/21663831.2017.1419994.
  • J. Ye et al., Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1− x)NaNbO3-xCaSnO3 ceramics, Appl. Phys. Lett. 114, 122901 (2019).
  • H. Qi and R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency, J. Mater. Chem. A 7 (8), 3971 (2019). DOI: 10.1039/C8TA12232F.
  • H. R. Jo and C. S. Lynch, A high energy density relaxor antiferroelectric pulsed capacitor dielectric, J. Appl. Phys. 119, 024104 (2016).
  • J. Li et al., Multilayer lead‐free ceramic capacitors with ultrahigh energy density and efficiency, Adv. Mater. 30, 1802155 (2018).
  • G. Wang et al., Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, Energy Environ. Sci. 12 (2), 582 (2019). DOI: 10.1039/C8EE03287D.
  • H. Qi and R. Zuo, Giant electrostrictive strain in (Bi0.5Na0.5)TiO3–NaNbO3 lead-free relaxor antiferroelectrics featuring temperature and frequency stability, J. Mater. Chem. A 8 (5), 2369 (2020). DOI: 10.1039/C9TA12244C.
  • H. Qi et al., Ultrahigh energy‐storage density in NaNbO3‐based lead‐free relaxor antiferroelectric ceramics with nanoscale domains, Adv. Funct. Mater. 29 (35), 1903877 (2019). DOI: 10.1002/adfm.201903877.
  • R. Zuo, J. Fu, and H. Qi, Stable antiferroelectricity with incompletely reversible phase transition and low volume-strain contribution in BaZrO3 and CaZrO3 substituted NaNbO3 ceramics, Acta. Mater. 161, 352 (2018). DOI: 10.1016/j.actamat.2018.09.056.
  • H. Guo et al., Domain configuration changes under electric field-induced antiferroelectric-ferroelectric phase transitions in NaNbO3-based ceramics, J. Appl. Phys. 118, 054102 (2015).
  • Z. Liu et al., Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases, J. Eur. Ceram. Soc. 38 (15), 4939 (2018). DOI: 10.1016/j.jeurceramsoc.2018.07.029.
  • P. Fan et al., Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics, J. Mater. Chem. C 8 (17), 5681 (2020). DOI: 10.1039/D0TC00589D.
  • A. Tian et al., Large energy-storage density in transition-metal oxide modified NaNbO3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure, J. Mater. Chem. A 8 (17), 8352 (2020). DOI: 10.1039/D0TA02285C.
  • J. Ye et al., Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics, J. Materiomics 7 (2), 339 (2021). DOI: 10.1016/j.jmat.2020.08.007.
  • R. Shi et al., A novel lead-free NaNbO3–Bi(Zn0.5Ti0.5)O3 ceramics system for energy storage application with excellent stability, J. Alloys Compd. 815, 152356 (2020). DOI: 10.1016/j.jallcom.2019.152356.
  • M. Zhou et al., Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy, J. Mater. Chem. A 6 (37), 17896 (2018). DOI: 10.1039/C8TA07303A.
  • A. Xie, H. Qi, and R. Zuo, Achieving remarkable amplification of energy-storage density in two-step sintered NaNbO3–SrTiO3 antiferroelectric capacitors through dual adjustment of local heterogeneity and grain scale, ACS Appl. Mater. Interfaces 12 (17), 19467 (2020). DOI: 10.1021/acsami.0c00831.
  • T. Wei et al., Novel NaNbO3–Sr0.7Bi0.2TiO3 lead-free dielectric ceramics with excellent energy storage properties, Ceram. Int. 47 (3), 3713 (2021). DOI: 10.1016/j.ceramint.2020.09.228.
  • P. Shi et al., Significantly enhanced energy storage properties of Nd3+ doped AgNbO3 lead-free antiferroelectric ceramics, J. Alloys Compd. 877, 160162 (2021). DOI: 10.1016/j.jallcom.2021.160162.
  • J. Shi et al., Realizing ultrahigh recoverable energy density and superior charge–discharge performance in NaNbO3-based lead-free ceramics via a local random field strategy, J. Mater. Chem. C 8, 3784 (2020).
  • W. Bian et al., Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics, J. Mater. Sci. 29 (4), 2743 (2018). DOI: 10.1007/s10854-017-8201-y.
  • A. B. Spierings, M. U Schneider, and R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts, Rapid Prototyp. J. 17 (5), 380 (2011). DOI: 10.1108/13552541111156504.
  • J. Wang et al., Significantly enhanced energy storage performance in Sm-doped 0.88NaNbO3-0.12Sr0.7Bi0.2TiO3 lead-free ceramics, Ceram. Int. 47 (13), 17964 (2021). DOI: 10.1016/j.ceramint.2021.03.110.
  • G. Shirane, R. Newnham, and R. Pepinsky, Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3, Phys. Rev. 96 (3), 581 (1954). DOI: 10.1103/PhysRev.96.581.
  • L. Chao et al., High dense structure boosts stability of antiferroelectric phase of NaNbO3 polycrystalline ceramics, Appl. Phys. Lett. 108, 212902 (2016).
  • H. D. Megaw, The seven phases of sodium niobate, Ferroelectrics 7 (1), 87 (1974). DOI: 10.1080/00150197408237956.
  • N. Luo et al., Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density, J. Mater. Chem. A 7 (23), 14118 (2019). DOI: 10.1039/C9TA02053E.
  • L. Yang et al., Perovskite lead-free dielectrics for energy storage applications, Prog. Mater. Sci. 102, 72 (2019). DOI: 10.1016/j.pmatsci.2018.12.005.
  • J. Jiang et al., Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency, J. Materiomics 8 (2), 295 (2022). DOI: 10.1016/j.jmat.2021.09.007.
  • N. Luo et al., Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics, J. Mater. Chem. C 7 (17), 4999 (2019). DOI: 10.1039/C8TC06549G.
  • X. Cheng, X. Chen, and P. Fan, Excellent energy storage performance in NaNbO3-based relaxor antiferroeic ceramics under a low electric field, J. Electroceramics, 48 (4), 1 (2022).
  • C. Sun et al., Simultaneously with large energy density and high efficiency achieved in NaNbO3-based relaxor ferroelectric ceramics, J. Eur. Ceram. Soc. 41 (3), 1891 (2021). DOI: 10.1016/j.jeurceramsoc.2020.10.049.
  • Y. Li et al., Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme, J. Eur. Ceram. Soc. 40 (6), 2357 (2020). DOI: 10.1016/j.jeurceramsoc.2020.01.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.