Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of 0.7BaTiO3-0.3Ni0.7Zn0.3Fe2O4 Multiferroic Composite Ceramics Prepared by the Solid-State Combustion Technique

, , , &
Pages 197-206 | Received 15 Jan 2023, Accepted 20 Apr 2023, Published online: 29 Sep 2023

References

  • M. Sagar et al., Magnetoelectric, magnetodielectric effect and dielectric, magnetic properties of microwave-sintered lead-free x(Co0.9Ni0.1Fe2O4)-(1-x)[0.5(Ba0.7, Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3)] particulate multiferroic composite, Ceram. Int. 46 (3), 3311 (2020). DOI: 10.1016/j.ceramint.2019.10.038.
  • X. Yuze et al., Effect of magnetic phase on structural and multiferroic properties of Ni1-xZnxFe2O4/BaTiO3 composite ceramics, J. Electron. Mater. 48, 4806 (2019). DOI: 10.1007/s11664-019-07261-z.
  • R. Jyoti et al., Structural, dielectric and magnetoelectric studies of [0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7, Ca0.3)TiO3]-Ni0.8Zn0.2Fe2O4 multiferroic composites, J. Alloys Compd. 696, 266 (2017). DOI: 10.1016/j.jallcom.2016.11.269.
  • K. Kulwinder et al., Multiferroic and magnetodielectric properties of (1- x)KNN- xCMgFO ceramic-based composites, J. Asian Ceram. Soc. 8 (4), 1 (2020). DOI: 10.1080/21870764.2020.1803534.
  • L. Mitoseriu et al., Magnetic properties of the BaTiO3–(Ni,Zn)Fe2O4 multiferroic composites, J. Magn. Magn. Mater 316 (2), e603 (2007). DOI: 10.1016/j.jmmm.2007.03.036.
  • Z. Shan-Tao et al., Preparation and multiferroic properties of Bi0.8La0.2FeO3–CoFe2O4 ceramics, Solid State Commun 148 (9-10), 420 (2008). DOI: 10.1016/j.ssc.2008.09.026.
  • G. Rongli et al., A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4,/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics, Compos, B. Eng. Compos. Part B-Eng. 166, 204 (2019). DOI: 10.1016/j.compositesb.2018.12.010.
  • Mishra P. et al., Effect of sintering temperature on dielectric, piezoelectric and ferroelectric properties of BZT–BCT 50/50 ceramics, J. Alloys Compd. 545, 210–215 (2012). DOI: 10.1016/j.jallcom.2012.08.017.
  • A. Testino et al., Preparation of multiferroic composites of BaTiO3–Ni0.5Zn0.5Fe2O4 ceramics, J. Eur. Ceram. Soc. 26 (14), 3031 (2006). DOI: 10.1016/j.jeurceramsoc.2006.02.022.
  • O. A. Ramdasi et al., Ferroelectric and dielectric properties of BT based lead free ceramics, J. Mater. Sci. 4 (3), 7 (2016).
  • S. Zong-Yang et al., Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure, JCS-Japan 118 (10), 940 (2010). DOI: 10.2109/jcersj2.118.940.
  • D. Bowen et al., Piezoelectric grain-size effects of BaTiO3 ceramics under different sintering atmospheres, J Mater Sci: Mater. Electron. 28 (11), 7928 (2017). DOI: 10.1007/s10854-017-6494-5.
  • R. Sonia et al., Characterizations of BT ceramics synthesized by modified solid state route, AIP Conf. Proc. 1372, 116–120 (2011). DOI: 10.1063/1.3644428.
  • H. Sihuan et al., Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors, J. Mater. Sci.: Mater. Electron. 28 (13), 9322 (2017). DOI: 10.1007/s10854-017-6670-7.
  • V. Klatnatee et al., Nickel ferrite ceramics: combustion synthesis, sintering, characterization, and magnetic and electrical properties, J. Asian Ceram. Soc 9 (2), 639 (2021). DOI: 10.1080/21870764.2021.1907031.
  • S. Premkumar et al., Magnetic and magnetostrictive properties of tape casted free standing NZFO thick films and its composite with piezoelectric phase, J. Magn. Magn. Mater. 490, 165523 (2019). DOI: 10.1016/j.jmmm.2019.165523.
  • L. Xiaodong et al., Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4-BaTiO3 composite ceramics, Process. Appl. Ceram. 14 (2), 97 (2020). DOI: 10.2298/PAC2002091L.
  • Z. Rong-Fen et al., Dielectric, ferromagnetic and maganetoelectric properties of BaTiO3–Ni0.7Zn0.3Fe2O4 composite ceramics, Mater. Res. Bull. 48, 4100 (2013). DOI: 10.1016/j.materresbull.2013.06.026.
  • K. Dhiren et al., Magnetoelectric composites: applications, coupling mechanisms, and future directions, Nanomater. 10 (10), 2072 (2020). DOI: 10.3390/nano10102072.
  • W. Li et al., Enhanced ferroelectric properties in (Ba1-xCax)(Ti0.94Sn0.06)O3 lead-free ceramics, J. Eur. Ceram. Soc. 32 (3), 517 (2012). DOI: 10.1016/j.jeurceramsoc.2011.09.020.
  • C. Suphornphun et al., Optimum conditions for preparation of high-performance (Ba0.97 Ca0.03)(Ti0.94Sn0.06)O3 ceramics by solid-state combustion, J. Electron. Mater. 46 (8), 5215 (2017). DOI: 10.1007/s11664-017-5533-6.
  • G. Bharat et al., Improved ferroelectric, piezoelectric and electrostrictive properties of dense BaTiO3 ceramic, AIP Conf. Proc. 1731, 140066-1 (2015). DOI: 10.1063/1.4948232.
  • B. Pankhuri et al., Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites, J. Mater. Sci. Mater. Electron. 32, 17512 (2021). DOI: 10.1007/s10854-021-06284-9.
  • R. Grigalaitis et al., Dielectric and magnetic properties of BaTiO3–NiZnFe2O4 multiferroic composites, Ceram. Int. 40 (4), 6165 (2014). DOI: 10.1016/j.ceramint.2013.11.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.