Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
126
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Development of Flexible Semiconductors Based on g-C3N4/Cu2O P–N Heterojunction for Triboelectric Nanogenerator Application

, , , , , , & show all
Pages 13-24 | Received 15 Jan 2023, Accepted 01 Apr 2023, Published online: 29 Sep 2023

References

  • S. Gokhool et al., Reflections on boosting wearable triboelectric nanogenerator performance via interface optimisation, Results in Engineering 17, 100808 (2023). DOI: 10.1016/j.rineng.2022.100808.
  • X. Shen et al., Punching pores on cellulose fiber paper as the spacer of triboelectric nanogenerator for monitoring human motion, Energy Rep. 6, 2851 (2020). DOI: 10.1016/j.egyr.2020.10.011.
  • S. Sriphan et al., Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance, Nano Res. 16 (2), 3168 (2023). DOI: 10.1007/s12274-022-4957-3.
  • S. Jakmuangpak et al., Engineering bacterial cellulose films by nanocomposite approach and surface modification for biocompatible triboelectric nanogenerator, ACS Appl. Electron. Mater. 2 (8), 2498 (2020). DOI: 10.1021/acsaelm.0c00421.
  • S. Sriphan and N. Vittayakorn, Facile roughness fabrications and their roughness effects on electrical outputs of the triboelectric nanogenerator, Smart Mater. Struct. 27 (10), 105026 (2018). DOI: 10.1088/1361-665X/aadb65.
  • F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, Flexible triboelectric generator, Nano Energy 1 (2), 328 (2012). DOI: 10.1016/j.nanoen.2012.01.004.
  • S. Sriphan et al., High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 Nanosheets and silver nanopowders cofillers, ACS Appl. Energy Mater. 2 (5), 3840 (2019). DOI: 10.1021/acsaem.9b00513.
  • C. Xu et al., Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact-electrification, Adv. Mater. 30 (38), 1803968 (2018). DOI: 10.1002/adma.201803968.
  • C. X. Lu et al., Temperature effect on performance of triboelectric nanogenerator, Adv. Eng. Mater. 19 (12), 1700275 (2017). DOI: 10.1002/adem.201700275.
  • Y. Wu et al., Hybrid photovoltaic-triboelectric nanogenerators for simultaneously harvesting solar and mechanical energies, Nano Energy 89, 106376 (2021). DOI: 10.1016/j.nanoen.2021.106376.
  • Y. Li et al., Electron transfer mechanism of graphene/Cu heterostructure for improving the stability of triboelectric nanogenerators, Nano Energy 70, 104540 (2020). DOI: 10.1016/j.nanoen.2020.104540.
  • W. Liu, Z. Wang, and C. Hu, Advanced designs for output improvement of triboelectric nanogenerator system, Mater. Today 45, 93 (2021). DOI: 10.1016/j.mattod.2020.11.012.
  • J. Shao et al., Designing rules and optimization of triboelectric nanogenerator arrays, Adv. Energy Mater. 11 (16), 2100065 (2021). doi: 10.1002/aenm.202100065. DOI: 10.1002/aenm.202100065.
  • C. Wu et al., Triboelectric nanogenerator: a foundation of the energy for the new era, Adv. Energy Mater. 9 (1), 1802906 (2019). doi: 10.1002/aenm.201802906. DOI: 10.1002/aenm.201802906.
  • M. A. Mahmud et al., Improving the surface charge density of a contact-separation-based triboelectric nanogenerator by modifying the surface morphology, Microelectron. Eng. 159, 10203/01 (2016). DOI: 10.1016/j.mee.2016.02.066.
  • Y. Zhou et al., Engineering materials at the nanoscale for triboelectric nanogenerators, Cell Rep. Phys. Sci. 1 (8), 100142 (2020). DOI: 10.1016/j.xcrp.2020.100142.
  • S. Sriphan, and N. Vittayakorn, Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: recent advances and perspectives, J. Sci: Adv. Mater. Dev. 7 (3), 100461 (2022). DOI: 10.1016/j.jsamd.2022.100461.
  • W. Shockley, The theory of p–n junctions in semiconductors and p-n junction transistors, Bell Syst. Tech. J. 28 (3), 435 (1949). DOI: 10.1002/j.1538-7305.1949.tb03645.x.
  • M. Raja et al., Fabrication and characterization of novel Ga-doped WO3 films and n-Ga@WO3/p-Si junction diode for optoelectronic device applications, Inorg. Chem. Commun. 139, 109291 (2022). DOI: 10.1016/j.inoche.2022.109291.
  • S. Bhuvaneswari et al., Fabrication and characterization of p-Si/n-In2O3 and p-Si/n-ITO junction diodes for optoelectronic device applications, Surf. Interfaces 23, 100992 (2021). DOI: 10.1016/j.surfin.2021.100992.
  • N. L. Dmitruk et al., Low-temperature diffused p–n junction with nano/microrelief interface for solar cell applications, Sol. Energy Mater. Sol. Cells 137, 124 (2015). DOI: 10.1016/j.solmat.2015.01.019.
  • D. Guo, and Y. Ju, Preparation of Cu2O/ZnO p-n junction by thermal oxidation method for solar cell application, Mater. Today: Proc. 3 (2), 350 (2016). DOI: 10.1016/j.matpr.2016.01.019.
  • Y. Lu et al., Direct-current generator based on dynamic P-N junctions with the designed voltage output, iScience 22, 58 (2019). DOI: 10.1016/j.isci.2019.11.004.
  • R. Yang et al., Semiconductor-based dynamic heterojunctions as an emerging strategy for high direct-current mechanical energy harvesting, Nano Energy 83, 105849 (2021). DOI: 10.1016/j.nanoen.2021.105849.
  • R. Xu et al., Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor, Nano Energy 66, 104185 (2019). DOI: 10.1016/j.nanoen.2019.104185.
  • X. Huang et al., Microscale Schottky superlubric generator with high direct-current density and ultralong life, Nat Commun 12 (1), 2268 (2021). DOI: 10.1038/s41467-021-22371-1.
  • L. Ren et al., p-n Junction based direct-current triboelectric nanogenerator by conjunction of tribovoltaic effect and photovoltaic effect, Nano Lett. 21 (23), 10099 (2021). DOI: 10.1021/acs.nanolett.1c03922.
  • L. Goulart et al., Electronic and structural properties of black phosphorene doped with Si, B and N, Phys. Lett. A 383 (32), 125945 (2019). DOI: 10.1016/j.physleta.2019.125945.
  • M. Alhaddad et al., Visible light production of hydrogen from glycerol over Cu2O-gC3N4 nanocomposites with enhanced photocatalytic efficiency, J. Mater. Res. Technol. 9 (6), 15335 (2020). DOI: 10.1016/j.jmrt.2020.10.093.
  • J. Liu et al., Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem. 21 (38), 14398 (2011). DOI: 10.1039/c1jm12620b.
  • D. Jiang et al., Synthesis of cuprous oxide with morphological evolution from truncated octahedral to spherical structures and their size and shape-dependent photocatalytic activities, J. Colloid Interface Sci. 461, 25 (2016). DOI: 10.1016/j.jcis.2015.09.034.
  • S. S. K. Mallineni et al., A low-cost approach for measuring electrical load currents in triboelectric nanogenerators, Nanotechnol. Rev. 7 (2), 149 (2018). DOI: 10.1515/ntrev-2017-0178.
  • Y. Gao et al., Extraordinary photodegradation performance of graphitic carbon nitride derived from tin foil–wrapped urea, J. Nanopart. Res. 23, (2), 44 (2021). DOI: 10.1007/s11051-020-05111-2.
  • Q. Liang et al., Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production, Adv. Funct. Mater 25 (44), 6885 (2015). DOI: 10.1002/adfm.201503221.
  • J. Cao et al., Solid-State Method Synthesis of SnO2-decorated g-C3N4 nanocomposites with enhanced gas-sensing property to ethanol, Materials (Basel) 10 (6), 604 (2017). DOI: 10.3390/ma10060604.
  • A. Kumar et al., Nickel Decorated on Phosphorous-doped carbon nitride as an efficient photocatalyst for reduction of nitrobenzenes, Nanomaterials 6 (4), 5904/01 (2016). DOI: 10.3390/nano6040059.
  • H. Zou et al., Photocatalytic activity enhancement of modified g-C3N4 by ionothermal copolymerization, J. Materiomics 1 (4), 340 (2015). DOI: 10.1016/j.jmat.2015.10.004.
  • D. Rattan Paul et al., Effect of calcination temperature, pH and catalyst loading on photodegradation efficiency of urea derived graphitic carbon nitride towards methylene blue dye solution, RSC Adv. 9 (27), 15381 (2019). DOI: 10.1039/C9RA02201E.
  • Z. Sun et al., Facile synthesis of visible light-induced g-C3N4/rectorite composite for efficient photodegradation of ciprofloxacin, Materials 11 (12), 2452 (2018). DOI: 10.3390/ma11122452.
  • S. Pattnaik et al., Facile synthesis of exfoliated graphitic carbon nitride for photocatalytic degradation of ciprofloxacin under solar irradiation, J Mater. Sci. 54 (7), 572604/01 (2019). DOI: 10.1007/s10853-018-03266-x.
  • J. He et al., Fast synthesis of hierarchical cuprous oxide for nonenzymatic glucose biosensors with enhanced sensitivity, J. Mater. Sci. 51 (21), 969611/01 (2016). DOI: 10.1007/s10853-016-0202-3.
  • Y. Yu et al., Preparation of hollow porous Cu2O microspheres and photocatalytic activity under visible light irradiation, Nanoscale Res Lett 7 (1), 347 (2012). DOI: 10.1186/1556-276X-7-347.
  • V. Sudha, G. Murugadoss, and T. Rangasamy, Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite, Sci Rep 11 (1), 3413 (2021). DOI: 10.1038/s41598-021-82741-z.
  • Y. Tian et al., Graphitic carbon nitride/Cu2O heterojunctions: Preparation, characterization, and enhanced photocatalytic activity under visible light, J. Solid State Chem. 212, 1 (2014). DOI: 10.1016/j.jssc.2014.01.011.
  • H. Liu et al., Study on the internal electric field in the Cu2O/g-C3N4 p–n heterojunction structure for enhancing visible light photocatalytic activity, New J. Chem., 44 (5), 1795 (2020). DOI: 10.1039/C9NJ05737D.
  • H. Wang et al., Coexistence of contact electrification and dynamic p–n junction modulation effects in triboelectrification, ACS Appl. Mater. Interfaces 14 (26), 30410 (2022). DOI: 10.1021/acsami.2c06374.
  • N., Review of basic semiconductor and p-n junction theory, in MOSFET Models for VLSI Circuit Simulation: Theory and Practice, edited by N. Arora (Vienna: Springer Vienna, 1993), pp. 15–68. DOI: 10.1007/978-3-7091-9247-4_2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.