Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 238, 2023 - Issue 1
72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Point Defects in Rare-Earth Perovskite Systems BaMO3 (M = Ce, Pr and Tb) on Dielectric and Magnetic Behaviors

, , , , , , , & show all
Pages 296-308 | Received 15 Jan 2023, Accepted 07 May 2023, Published online: 29 Sep 2023

References

  • K. Wakino, High frequency dielectrics and their applications, presented at the Sixth IEEE International Symposium on Applications of Ferroelectrics, Lehigh University, Bethlehem, PA, USA, 8–11 June, 1986. DOI: 10.1109/ISAF.1986.201104.
  • K. Wakino, Recent development of dielectric resonator materials and filters in Japan, Ferroelectrics. 91 (1), 69 (1989). DOI: 10.1080/00150198908015730.
  • M. T. Sebastian, Chapter one - introduction, in Dielectric Materials for Wireless Communication, edited by M. T. Sebastian (Elsevier, Amsterdam, the Netherlands, 2008), pp. 1–10.
  • O. Hitoshi, Microwave dielectrics with perovskite-type structure, in Perovskite Materials, edited by P. Likun and Z. Guang (IntechOpen, Rijeka, Croatia, 2016), p. Ch. 9.
  • D. Carranza-Celis et al., Control of multiferroic properties in BiFeO3 nanoparticles, Sci. Rep. 9 (1), 3182 (2019). DOI: 10.1038/s41598-019-39517-3.
  • T. Kimura et al., Magnetic control of ferroelectric polarization, Nature. 426 (6962), 55 (2003). DOI: 10.1038/nature02018.
  • R. Zhao et al., Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling, Nat. Commun. 13 (1), 2364 (2022). DOI: 10.1038/s41467-022-30074-4.
  • T. Kolodiazhnyi et al., Giant magnetocapacitance in cerium sesquioxide, Phys. Rev. B. 98 (5), 054423 (2018). DOI: 10.1103/PhysRevB.98.054423.
  • Y. K. Fetisov and G. Srinivasan, Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator, Appl. Phys. Lett. 88 (14), 143503 (2006). DOI: 10.1063/1.2191950.
  • I. K. Naik and T. Y. Tien, Electrical conduction in Nb2O5-doped cerium dioxide, J. Electrochem. Soc. 126 (4), 562 (1979). DOI: 10.1149/1.2129086.
  • T. G. Stratton and H. L. Tuller, Thermodynamic and transport studies of mixed oxides. The CeO2–UO2 system, J. Chem. Soc, Faraday Trans. 2. 83 (7), 1143 (1987). DOI: 10.1039/F29878301143.
  • R. Heinzmann et al., Observing local oxygen interstitial diffusion in donor-doped ceria by 17O NMR relaxometry, J. Phys. Chem. C. 120 (16), 8568 (2016). DOI: 10.1021/acs.jpcc.6b03341.
  • T. Charoonsuk, N. Vittayakorn, and T. Kolodiazhnyi, Lattice evolution and point defect chemistry in Ta-doped ceria, J. Alloys Compd. 695, 1317 (2017). DOI: 10.1016/j.jallcom.2016.10.272.
  • P. Pulphol et al., Electrical conductivity, magnetism, and optical properties of reduced BaCeO3, Appl. Phys. A. 125 (3), 197 (2019). DOI: 10.1007/s00339-019-2497-9.
  • M. Swift, A. Janotti, and C. G. Van de Walle, Small polarons and point defects in barium cerate, Phys. Rev. B. 92 (21), 214114 (2015). DOI: 10.1103/PhysRevB.92.214114.
  • T. Kolodiazhnyi et al., Magnetic, optical, and electron transport properties of n-type CeO2: small polarons versus Anderson localization, Phys. Rev. B. 95 (4), 045203 (2017). DOI: 10.1103/PhysRevB.95.045203.
  • J. M. Polfus, M. Pishahang, and R. Bredesen, Influence of Ce3+ polarons on grain boundary space-charge in proton conducting Y-doped BaCeO3, Phys. Chem. Chem. Phys. 20 (23), 16209 (2018). DOI: 10.1039/c8cp00168e.
  • G. Y. Gao, K. L. Yao, and Z. L. Liu, Electronic structure of cubic BaTbO3 from first-principles pseudopotential calculations, Can. J. Phys. 84 (2), 115 (2006). DOI: 10.1139/p06-008.
  • Y. Hinatsu, Magnetic studies on BaUO3, BaPrO3 and BaTbO3, J. Alloys Compd. 193 (1-2), 113 (1993). DOI: 10.1016/0925-8388(93)90325-H.
  • A. J. Jacobson, B. C. Tofield, and B. E. F. Fender, The structures of BaCeO3, BaPrO3 and BaTbO3 by neutron diffraction: Lattice parameter relations and ionic radii in O-perovskites, Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 28 (3), 956 (1972). DOI: 10.1107/S0567740872003462.
  • D. R. Jaishi and M. P. Ghimire, Elastic, electronic, optical and thermoelectric properties of perovskite: BaTbO3, Mater. Today Commun. 29, 102896 (2021). DOI: 10.1016/j.mtcomm.2021.102896.
  • C. Ma, L. Ye, and Z. Yang, Electronic structures of perovskite BaTbO3 studied by the LSDA + U method, J. Phys. Condens. Matter. 17 (50), 7963 (2005). DOI: 10.1088/0953-8984/17/50/014.
  • E. Sarantopoulou et al., Magnetic moment of the 4f/sup 8/and 4f/sup 7/5d electronic configurations of Tb/sup 3+/ions in wide bandgap fluoride dielectric crystals, IEEE Trans. Magn. 39 (5), 3426 (2003). DOI: 10.1109/TMAG.2003.816171.
  • Vishwamittar, S. P. Taneja, and P. Puri, Thermal and magnetic properties of Pr3+ and Er3+ ions in a crystal field with C3h site symmetry, J. Phys. C. Solid State Phys. 4(13), 1692 (1971). DOI: 10.1088/0022-3719/4/13/019.
  • V. Petříček, M. Dušek, and L. Palatinus, Crystallographic computing system JANA2006: general features, Crystallogr. Comput. Syst. JANA2006 Gen. Features. 229 (5), 345 (2014). DOI: 10.1515/zkri-2014-1737.
  • M. Yoshimura, T. Nakamura, and T. Sata, Preparation and lattice distortion of perovskite-type compounds A2+R4+O3 (A = Ba,Sr R = Ce,Pr,Tb), Chem. Lett. 2 (9), 923 (1973). DOI: 10.1246/cl.1973.923.
  • H. M. Chan, M. R. Harmer, and D. M. Smyth, Compensating defects in highly donor-doped BaTiO3, J. Am. Ceram. Soc. 69 (6), 507 (1986). DOI: 10.1111/j.1151-2916.1986.tb07453.x.
  • N. G. Eror, Defect structure and transport properties of titanates, in Transport in Nonstoichiometric Compounds, edited by G. Simkovich and V.S. Stubican (Springer US, Boston, MA, 1985), pp. 505–516.
  • G. H. Jonker and E. E. Havinga, The influence of foreign ions on the crystal lattice of barium titanate, Mater. Res. Bull. 17 (3), 345 (1982). DOI: 10.1016/0025-5408(82)90083-6.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A. 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • M. Bickel et al., The magnetic susceptibility of Pr4+ in BaPrO3: evidence of long-range magnetic order, J. Solid State Chem. 76 (1), 178 (1988). DOI: 10.1016/0022-4596(88)90205-8.
  • V. L. Gurevich and A. K. Tagantsev, Intrinsic dielectric loss in crystals, Adv. Phys. 40 (6), 719 (1991). DOI: 10.1080/00018739100101552.
  • P. Pulphol et al., Dielectric relaxation behavior of BaZrO3 ceramics at low temperature, Ceram. Int. 46 (15), 24488 (2020). DOI: 10.1016/j.ceramint.2020.06.234.
  • E. L. Colla, I. M. Reaney, and N. Setter, DiP256: The temperature coefficient of the relative permittivity of complex perovskites and its relation to structural transformations, Ferroelectrics. 133 (1), 217 (1992). DOI: 10.1080/00150199208218002.
  • I. M. Reaney et al., Dielectric and structural characteristics of Ba- and Sr-based complex perovskites as a function of tolerance factor, Jpn. J. Appl. Phys. 33 (7R), 3984 (1994). DOI: 10.1143/JJAP.33.3984.
  • M. R. Varma and M. T. Sebastian, Effect of dopants on microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics, J. Eur. Ceram. Soc. 27 (8-9), 2827 (2007). DOI: 10.1016/j.jeurceramsoc.2006.11.014.
  • K. P. Surendran et al., Microwave dielectric properties of RE1−xRE′xTiNbO6 [RE = Pr, Nd, Sm; RE′= Gd, Dy, Y] ceramics, J. Am. Ceram. Soc. 86 (10), 1695 (2003). DOI: 10.1111/j.1151-2916.2003.tb03542.x.
  • I. M. Reaney and D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks, J. Am. Ceram. Soc. 0 (0), 060428035142006 (2006). DOI: 10.1111/j.1551-2916.2006.01025.x.
  • P. Pulphol et al., The tuning of temperature stability in ultralow loss (Ba/Sr) zirconate microwave dielectric, Ferroelectrics. 601 (1), 59 (2022). DOI: 10.1080/00150193.2022.2130778.
  • D. Cros et al., Design rules for dielectric temperature compensated resonators, presented at the 2000 30th European Microwave Conference, Paris, France, 2–5 Oct. 2000.
  • S. H. Yoon et al., Mixture behavior and microwave dielectric properties of (1 − x)CaWO4–xTiO2, J. Eur. Ceram. Soc. 27 (8-9), 3087 (2007). DOI: 10.1016/j.jeurceramsoc.2006.11.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.