Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative Properties Investigations of Organic Doped Hybrid-Perovskite Solar Cells

, , , , , & show all
Pages 299-314 | Received 12 Mar 2023, Accepted 26 Apr 2023, Published online: 27 Oct 2023

References

  • M. I. H. Ansari, A. Qurashi, and M. K. Nazeeruddin, Frontiers, opportunities, and challenges in perovskite solar cells: A critical review, J. Photochem. Photobiol. C Photochem. Rev. 35, 1 (2018). DOI: 10.1016/j.jphotochemrev.2017.11.002.
  • H. Imran et al., High-performance bifacial perovskite/silicon double-tandem solar cell, IEEE J. Photovolt. 8 (5), 1 (2018). DOI: 10.1109/JPHOTOV.2018.2846519.
  • A. Kojima et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (17), 6050 (2009). DOI: 10.1021/ja809598r.
  • M. M. Lee et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science. 338 (6107), 643 (2012). DOI: 10.1126/science.1228604.
  • M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater. 13 (9), 838 (2014). DOI: 10.1038/nmat406.
  • S. D. Stranks et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science. 342 (6156), 341 (2013). DOI: 10.1126/science.1243982.
  • Q. Dong et al., Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals, Science. 347 (6225), 967 (2015). DOI: 10.1126/science.aaa5760.
  • P. Basumatary, and P. Agarwa, A short review on progress in perovskite solar cells, Mater. Res. Bull. 149, 111700 (2022). DOI: 10.1016/j.materresbull.2021.111700.
  • M. Delor et al., Carrier diffusion lengths exceeding 1 μm despite trap-limited transport in halide double perovskites, ACS Energy Lett. 5 (5), 1337 (2020). DOI: 10.1021/acsenergylett.0c00414.
  • K. Kumari et al., Lead free CH3NH3SnI3 based perovskite solar cell using ZnTe nano flowers as hole transport layer, Opt. Mater. 111, 110574 (2021). DOI: 10.1016/j.optmat.2020.110574.
  • P. K. Patel, Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell, Sci. Rep. 11 (1), 3082 (2021). DOI: 10.1038/s41598-021-82817-w.
  • D. E. Tareq, S. M. AbdulAlmohsin, and H. H. Waried, Perovskite solar cells based on CH3NH3SnI3 Structure, IOP Conf. Ser. Mater. Sci. Eng. 928 (7), 072148 (2020). DOI: 10.1088/1757-899X/928/7/072148.
  • T. Yokoyama et al., Overcoming short-circuit in lead-Free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas–solid reaction film fabrication process, J. Phys. Chem. Lett. 7 (5), 776 (2016). DOI: 10.1021/acs.jpclett.6b00118.
  • L. N. Quan et al., Ligand-stabilized reduced-dimensionality perovskites, J. Am. Chem. Soc. 138 (8), 2649 (2016). DOI: 10.1021/jacs.5b11740.
  • M. S. de Holanda et al., In situ 2D perovskite formation and the impact of the 2D/3D structures on performance and stability of perovskite solar cells, Sol. RRL. 3 (9), 1900199 (2019). Special Issue: Perovskite Solar Cells and Optoelectronics Part 1. DOI: 10.1002/solr.201900199.
  • H. Zhou et al., Interface engineering of highly efficient perovskite solar cells, Science 345 (6196), 542 (2014). DOI: 10.1126/science.1254050.
  • J.-H. Im et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotechnol. 9 (11), 927 (2014). DOI: 10.1038/nnano.2014.181.
  • G. Xing et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science. 342 (6156), 344 (2013). DOI: 10.1126/science.1243167.
  • J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (7458), 316 (2013). DOI: 10.1038/nature12340.
  • H.-S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep. 2, 591 (2012). DOI: 10.1038/srep00591.
  • J.-H. Im et al., 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale. 3 (10), 4088 (2011). DOI: 10.1039/C1NR10867K.
  • N. Joong Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature. 517 (7535), 476 (2015). DOI: 10.1038/nature14133.
  • J. A. Sichert et al., Quantum size effect in organometal halide perovskite nanoplatelets, Nano Lett. 15 (10), 6521 (2015). DOI: 10.1021/acs.nanolett.5b02985.
  • P. Tyagi, S. M. Arveson, and W. A. Tisdale, Colloidal organohalide perovskite nanoplatelets exhibiting quantum confinement, J. Phys. Chem. Lett. 6 (10), 1911 (2015). DOI: 10.1021/acs.jpclett.5b00664.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.