Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
42
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Classical to Relaxor Ferroelectric Transformation of Lanthanum Modified BaTi0.91Sn0.09O3 Ceramics

, , , &
Pages 224-233 | Received 12 Jul 2022, Accepted 26 Aug 2022, Published online: 27 Oct 2023

References

  • P. K. Panda, and B. Sahoo, PZT to lead free piezo ceramics: a review, Ferroelectrics 474 (1), 128 (2015). DOI: 10.1080/00150193.2015.997146.
  • J. H. Jeon, Effect of SrTiO3 concentration and sintering temperature on microstructure and dielectric constant of Ba1−xSrxTiO3, J. Eur. Ceram. Soc. 24 (6), 1045 (2004). DOI: 10.1016/S0955-2219(03)00385-6.
  • J. H. Jeon, Y. D. Hahn, and H. D. Kim, Microstructure and dielectric properties of barium–strontium titanate with functionally graded structure, J. Eur. Ceram. Soc. 21 (10-11), 1653 (2001). DOI: 10.1016/S0955-2219(01)00085-1.
  • N. Baskaran, and H. Chang, Effect of Sn doping on the phase transformation properties of ferroelectric BaTiO3, J. Mater. Sci.: Mater. Electron. 12, 527 (2001). DOI: 10.1023/A:1012453526652.
  • N. Yasuda, H. Ohwa, and S. Asano, Dielectric properties and phase transitions of Ba(Ti1−xSnx)O3 solid solutions, Jpn. J. Appl. Phys. 35 (9S), 5099 (1996). DOI: 10.1143/JJAP.35.5099.
  • R. Bechmann, Elastic, piezoelectric and dielectric constant of polarized barium titanate ceramics and some application of the piezoelectric equation, J. Acoust. Soc. Am. 28 (3), 347 (1956). DOI: 10.1121/1.1908324.
  • N. Sareecha et al., Electrical investigations of BaTiO3 ceramics with Ba/Ti contents under influence of temperature, Solid State Ion. 303, 16 (2017). DOI: 10.1016/j.ssi.2017.02.003.
  • W. Zhang et al., Phase-transition behavior and piezoelectric properties of lead-free (Ba0.95Ca0.05)(Ti1-xZrx)O3 ceramics, J. Alloys Compd. 506 (1), 131 (2010). DOI: 10.1016/j.jallcom.2010.06.157.
  • W. Li et al., High piezoelectric d33 coefficient of lead-free (Ba0.93Ca0.07) (Ti0.95Zr0.05)O3 ceramics sintered at optimal temperature, J. Mater. Sci. Eng. B 176 (1), 65 (2011). DOI: 10.1016/j.mseb.2010.09.003.
  • S. Markovic et al., Preparation and properties of BaTi1-xSnxO3 multilayers ceramics, J. Eur. Ceram. Soc. 27, 505 (2007). DOI: 10.1016/j.jeurceramsoc.2006.04.066.
  • W. Liu et al., Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point, J. All. Comp. 712, 1 (2017). DOI: 10.1016/j.jallcom.2017.04.013.
  • H. G. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • C. A. Randall et al., High strain piezoelectric multilayer actuators—a material science and engineering challenge, J. Electroceram. 14 (3), 177 (2005)., DOI: 10.1007/s10832-005-0956-5.
  • J. Rödel et al., Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc. 92 (6), 1153 (2009). DOI: 10.1111/j.1551-2916.2009.03061.x.
  • V. Shvartsman, and D. Lupascu, Lead‐free relaxor ferroelectrics, J. Am. Ceram. Soc. 95 (1), 1 (2012). DOI: 10.1111/j.1551-2916.2011.04952.x.
  • H. Ogihara, C. A. Randall, and S. T. McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics, J. Am. Ceram. Soc. 92 (1), 110 (2009). DOI: 10.1111/j.1551-2916.2008.02798.x.
  • A. N. Salak, M. P. Seabra, and V. M. Ferreira, Evolution from ferroelectric to relaxor behavior in the (1-x)BaTiO3-xLa(Mg1/2Ti1/2)O3 system, Ferroelectrics 318 (1), 185 (2005). DOI: 10.1080/00150190590966360.
  • R. Farhi et al., Relaxor-like and spectroscopic properties of niobium modified barium titanate, Eur. Phys. J. B 18 (4), 605 (2000)., DOI: 10.1007/s100510070008.
  • N. Abdelmoula et al., Relaxor or classical ferroelectric behavior in A-site substituted perovskite type Ba1-x(Sm0.5Na0.5) xTiO3, Solid State Sci. 8 (8), 880 (2006). DOI: 10.1016/j.solidstatesciences.2006.01.014.
  • T. Maiti, R. Guo, and A. S. Bhalla, Structure-property phase diagram of BaZr xTi1-xO3 system, J. Am. Ceramic Soc. 91 (6), 1769 (2008). DOI: 10.1111/j.1551-2916.2008.02442.x.
  • A. Kholkin et al., Surface domain structures and mesoscopic phase transition in relaxor ferroelectrics, Adv. Funct. Mater. 21 (11), 1977 (2011). DOI: 10.1002/adfm.201002582.
  • H. Dang et al., Enhancement of relaxor behavior by La doping and its influence on the energy storage performance and electric breakdown strength of ferroelectric Pb(Zr0.52Ti0.48)O3 thin films, Mater. Chem. Phys. 234, 210 (2019). DOI: 10.1016/j.matchemphys.2019.06.005.
  • R. Kumar et al., Evolution of relaxor properties in lanthanum (La) doped barium zirconate titanate, Ferroelectrics 517 (1), 8 (2017). DOI: 10.1080/00150193.2017.1369820.
  • S. Monica et al., Rietveld refinement and impedance spectroscopy of calcium titanate, Curr. Appl. Phys. 12, 1429 (2012). DOI: 10.1016/j.cap.2012.03.034.
  • F. Zeng et al., Dielectric loss models, relaxor behavior and high ferroelectric properties of BCZTS-xST ceramics, J. Mater. Sci.: Mater. Electron. 29 (22), 18978 (2018). DOI: 10.1007/s10854-018-0022-0.
  • D. Li et al., P–E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications, J. Adv. Ceram. 9 (2), 183 (2020). DOI: 10.1007/s40145-020-0358-9.
  • L. Jin, F. Li, and S. Zhang, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, J. Am. Ceram. Soc. 97 (1), 1 (2014). DOI: 10.1111/jace.12773.
  • W. Cao, and C. A. Randall, Grain size and domain size relations in bulk ceramic ferroelectric materials, J. Phys. Chem. Solids 57 (10), 1499 (1996). DOI: 10.1016/0022-3697(96)00019-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.