Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 239, 2023 - Issue 1
53
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phase Transition, Thermal Expansion and Electrical Properties of BNLT-BT Ceramics Near the Morphotropic Phase Boundary

, , , , , , , , , , , & show all
Pages 234-247 | Received 10 Jul 2022, Accepted 28 Aug 2022, Published online: 27 Oct 2023

References

  • P. Jaiban et al., Relationship in dielectric, ferroelectric behaviors and large strain response of BaTiO3-doped (Bi0.4871Na0.4871)La0.0172TiO3 ceramics, Mater. Res. Express 6 (6), 066305 (2019). DOI: 10.1088/2053-1591/ab0a23.
  • M. Cernea et al., Dielectric, piezoelectric and magnetic behavior of CoFe2O4/BNT-BT0.08 monolayer thin films composites, Mater. Sci. Eng. B 282, 115770 (2022). DOI: 10.1016/j.mseb.2022.115770.
  • N. Pisitpipathsin, and P. Kantha, Ferroelectric and piezoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic with various sintering times, Integr. Ferroelectr. 187 (1), 138 (2018). DOI: 10.1080/10584587.2018.1444886.
  • S. Khardazi et al., Improvement of the electrocaloric effect and energy storage performances in Pb-free ferroelectric Ba0.9Sr0.1Ti0.9Sn0.1O3 ceramic near room temperature, J. Solid. State. Chem. 311, 123112 (2022). DOI: 10.1016/j.jssc.2022.123112.
  • P. Kantha, and N. Pisitpipathsin, Effect of KNbO3 addition on diffuse phase transition and dielectric properties of Bi0.5Na0.5TiO3 ceramics, Integr. Ferroelectr. 187 (1), 129 (2018). DOI: 10.1080/10584587.2018.1444884.
  • G. A. Smolenskii et al., New ferroelectrics of complex composition, Sov, Phys. Solid State 2, 2651 (1961).
  • A. Herabut, and A. Safari, Bi-based piezoelectric ceramics, J. Am. Ceram. Soc. 80 (11), 2954 (1997). DOI: 10.1111/j.1151-2916.1997.tb03219.x.
  • Y. Yao et al., Phase transition and piezoelectric property of (Bi0.5Na0.5)0.94Ba0.06ZryTi1−yO3(y = 0-0.04) ceramics, J. Appl. Phys. 102 (9), 094102 (2007). DOI: 10.1063/1.2803725.
  • T. Takenaka, K. Maruyama, and K. Sakata, (Bi1/2Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn. J. Appl. Phys. 30 (9S), 2236 (1991). DOI: 10.1143/JJAP.30.2236.
  • P. Kantha et al., Piezoelectric and ferroelectric properties of KNbO3 added Bi0.5Na0.5TiO3 ceramics, Key Eng. Mater. 751, 384 (2017). DOI: 10.4028/www.scientific.net/KEM.751.384.
  • P. Kantha et al., Phase formation and electrical properties of BNLT-BZT lead free piezoelectric ceramic system, Curr. Appl. Phys. 9 (2), 460 (2009). DOI: 10.1016/j.cap.2008.04.004.
  • S. H. Wemple, M. Didomenico, and I. Camlibel, Dielectric and optical properties of melt-grown BaTiO3, J. Phys. Chem. Solids 29 (10), 1797 (1968). DOI: 10.1016/0022-3697(68)90164-9.
  • P. Kantha, N. Pisitpipathsin, and K. Pengpat, Enhanced electrical properties of lead-free BNLT-BZT ceramics by thermal treatment technique, Ceram. Int. 39, S59 (2013). DOI: 10.1016/j.ceramint.2012.10.035.
  • N. Pisitpipathsin et al., Dielectric properties of lead free solid solution of Bi0.489Na0.487La0.017TiO3 and BaTiO3 addition, Phase Transit. 83 (10–11), 875 (2010). DOI: 10.1080/01411594.2010.509165.
  • U. Sukkha et al., Phase transition behavior of the (1-x)PbZrO3-xBa(Al1/2Nb1/2)O3 solid solution, J. Am. Ceram. Soc. 95 (10), 3151 (2012). DOI: 10.1111/j.1551-2916.2012.05277.x.
  • N. Pisitpipathsin et al., Effect of KNbO3 on physical and electrical properties of lead-free BaTiO3, Ceram. Int. 41 (3), 3639 (2015). DOI: 10.1016/j.ceramint.2014.11.029.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Cryst. A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • W. C. Lee et al., Chemical composition and tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based piezoelectric ceramics, J. Eur. Ceram. Soc. 29 (8), 1443 (2009). DOI: 10.1016/j.jeurceramsoc.2008.08.028.
  • A. S. Bhalla, R. Guo, and R. Roy, The perovskite structure-A review of its role in ceramic science and technology, Mater. Res. Innov. 4 (1), 3 (2000). DOI: 10.1007/s100190000062.
  • G. Burns, and F. H. Dacol, Polarization in the cubic phase of BaTiO3, Solid. State. Commun. 42 (1), 9 (1982). DOI: 10.1016/0038-1098(82)91018-3.
  • G. Burns, and F. H. Dacol, Crystalline ferroelectrics with glassy polarization behavior, Phys. Rev. B 28 (5), 2527 (1983). DOI: 10.1103/PhysRevB.28.2527.
  • M. Unruan et al., Thermal expansion behavior and estimated total polarizations of lead zirconate titanate–lead nickel niobate ceramics, Mater. Lett. 64 (18), 1960 (2010). DOI: 10.1016/j.matlet.2010.06.020.
  • W. Cochran, Crystal stability and the theory of ferrielectricity, Adv. Phys. 9 (36), 387 (1960). DOI: 10.1080/00018736000101229.
  • S. M. Pilgrim, A. E. Sutherland, and S. R. Winzer, Diffuseness as a useful parameter for relaxor ceramics, J Am. Ceram. Soc. 73 (10), 3122 (1990). DOI: 10.1111/j.1151-2916.1990.tb06733.x.
  • N. Tawichai et al., Influence of B2O3 on electrical properties and phase transition of lead-free Ba(Ti0.9Sn0.1)O3 ceramics, Phase Trans. 83 (1), 55 (2010). DOI: 10.1080/01411590903549005.
  • R. Wongmaneerung et al., Thermal expansion properties of PMN-PT ceramics, J. Alloys. Comp. 461 (1–2), 565 (2008). DOI: 10.1016/j.jallcom.2007.07.086.
  • G. Burns, and F. H. Dacol, Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb1/3)O3 and Pb(Zn1/3Nb1/3)O3, Solid State Commun. 48 (10), 853 (1983). DOI: 10.1016/0038-1098(83)90132-1.
  • G. Robert et al., Synthesis of lead nickel niobate-lead zirconate titanate solid solutions by a B-site precursor method, J. Am. Ceram. Soc. 84 (12), 2869 (2001). DOI: 10.1111/j.1151-2916.2001.tb01107.x.
  • P. Butnoi et al., Effect of BCZT dopant on ferroelectric properties of PZT ceramics, Key Eng. Mater. 675–676, 509 (2016). DOI: 10.4028/www.scientific.net/KEM.675-676.509.
  • P. Kantha et al., Structural and electrical properties of BZT-added BNLT ceramics, Ceram. Int. 40 (3), 4251 (2014). DOI: 10.1016/j.ceramint.2013.08.089.
  • X. Y. Zhou et al., Piezoelectric properties of Mn-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 ceramics, Mater. Lett. 59 (13), 1649 (2005). DOI: 10.1016/j.matlet.2005.01.034.
  • T. Takenaka, T. Okuda, and K. Takegahara, Lead-free piezoelectric ceramics based on. (Bi1/2Na1/2)TiO3-NaNbO3, Ferroelectrics 196 (1), 175 (1997). DOI: 10.1080/00150199708224156.
  • S. Fujino et al., Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite, Appl. Phys. Lett. 92, 202904 (2008).
  • G. H. Haertling, and W. J. Zimmer, An analysis of hot-pressing parameters for lead zirconate-lead titanate ceramics containing two atom percent bismuth, Am. Ceram. Soc. Bull. 45, 1084 (1966).
  • P. Khaenamkaew et al., Effect of Zr/Ti ratio on the microstructure and ferroelectric properties of lead zirconate titanate thin films, Mater. Chem. Phys. 102 (2–3), 159 (2007). DOI: 10.1016/j.matchemphys.2006.11.019.
  • H. Xinyou et al., Influence of composition on properties of BNT-BT lead-free piezoceramics, J. Rare. Earth 24 (1), 321 (2006). DOI: 10.1016/S1002-0721(07)60391-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.