857
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Parabolic Degrees and Lyapunov Exponents for Hypergeometric Local Systems

References

  • [Beukers 09] F. Beukers. Notes on Differential Equations and Hypergeometric Functions, 2009.
  • [Beukers and Heckman 89] F. Beukers and G. Heckman. “Monodromy for the Hypergeometric Function nFn−1.” Invent. Math. 95:2 (1989), 325–354.
  • [Bouw and Möller 10] I. I. Bouw and M. Möller. “Teichmüller Curves, Triangle Groups, and Lyapunov Exponents.” Ann. Math. (2) 172:1 (2010), 139–185.
  • [Brav and Thomas 14] C. Brav and H. Thomas. “Thin Monodromy in Sp(4).” Compos. Math. 150:3 (2014), 333–343.
  • [Dal’Bo 07] F. Dal’Bo. Trajectoires géodésiques et horocycliques. Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)]. Les Ulis/Paris: EDP Sciences/CNRS Éditions, 2007.
  • [Dettweiler and Sabbah 13] M. Dettweiler and C. Sabbah. “Hodge Theory of the Middle Convolution.” Publ. Res. Inst. Math. Sci. 49:4 (2013), 761–800.
  • [Eskin et al. 16] A. Eskin, M. Kontsevich, M. Moeller, and A. Zorich. “Lower Bounds for Lyapunov Exponents of Flat Bundles on Curves.” Preprint, arXiv:1609.01170, 2016.
  • [Eskin et al. 14] A. Eskin, M. Kontsevich, and A. Zorich. “Sum of Lyapunov Exponents of the Hodge Bundle with Respect to the Teichmüller Geodesic Flow.” Publ. Math. Inst. Hautes Études Sci. 120 (2014), 207–333.
  • [Fedorov 15] R. Fedorov. Variations of Hodge Structures for Hypergeometric Differential Operators and Parabolic Higgs Bundles, 2015.
  • [Filip 14] S. Filip. “Families of K3 Surfaces and Lyapunov Exponents.” Preprint, arXiv:1412.1779, 2014.
  • [Forni et al. 14] G. Forni, C. Matheus, and A. Zorich. “Zero Lyapunov Exponents of the Hodge Bundle.” Comment. Math. Helv. 89:2 (2014), 489–535.
  • [Kappes and Möller 16] A. Kappes and M. Möller. “Lyapunov Spectrum of Ball Quotients with Applications to Commensurability Questions.” Duke Math. J. 165:1 (2016), 1–66.
  • [Katz 96] N. M. Katz. Rigid Local Systems, Annals of Mathematics Studies, Vol. 139. Princeton, NJ: Princeton University Press, 1996.
  • [Kontsevich 97] M. Kontsevich. “Lyapunov Exponents and Hodge Theory.” In The Mathematical Beauty of Physics (Saclay, 1996), Adv. Ser. Math. Phys., Vol. 24, pp. 318–332. River Edge, NJ: World Sci. Publ., 1997.
  • [Krikorian 03–04] R. Krikorian. “Déviations de moyennes ergodiques, flots de teichmüller et cocycle de kontsevich-zorich.” Séminaire Bourbaki 46 (2003–2004), 59–94.
  • [Manin and Marcolli 14] Y. I. Manin and M. Marcolli. “Big Bang, Blowup, and Modular Curves: Algebraic Geometry in Cosmology.” Preprint, arXiv:1402.2158, 2014.
  • [Manin and Marcolli 15] Y. Manin and M. Marcolli. “Symbolic Dynamics, Modular Curves, and Bianchi IX Cosmologies.” Preprint, arXiv:1504.04005, 2015.
  • [Schmid 73] W. Schmid. “Variation of Hodge Structure: The Singularities of the Period Mapping.” Invent. Math. 22 (1973), 211–319.
  • [Series 85] C. Series. “The Modular Surface and Continued Fractions.” J. Lond. Math. Soc. (2), 31:1 (1985), 69–80.
  • [Simpson 90] C. T. Simpson. “Harmonic Bundles on Noncompact Curves.” J. Amer. Math. Soc. 3:3 (1990), 713–770.
  • [Singh and Venkataramana 14] S. Singh and T. N. Venkataramana. “Arithmeticity of Certain Symplectic Hypergeometric Groups.” Duke Math. J. 163:3 (2014), 591–617.
  • [Van Enckevort and Van Straten 08] C. Van Enckevort and D. Van Straten. “Monodromy Calculations of Fourth Order Equations of Calabi–Yau Type.” In “Mirror Symmetry V”, the BIRS Proc. on Calabi–Yau Varieties and Mirror Symmetry, AMS/IP, 2008.
  • [Yoshida 97] M. Yoshida. Hypergeometric Functions, My Love. Aspects of Mathematics, E32. Friedr. Braunschweig: Vieweg & Sohn, 1997. Modular interpretations of configuration spaces.
  • [Zorich 96] A. Zorich. “Finite Gauss Measure on the Space of Interval Exchange Transformations. Lyapunov Exponents.” Ann. Inst. Fourier (Grenoble) 46:2 (1996), 325–370.