1,271
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Numerical Verification of the Birch and Swinnerton-Dyer Conjecture for Hyperelliptic Curves of Higher Genus over ℚ up to Squares

ORCID Icon

References

  • [Booker et al. 16] A. R. Booker, J. Sijsling, A. Sutherland, J. Voight, D. Yasaki. “A database of genus-2 curves over the rational numbers.” LMS J. Comput. Math. 19:suppl. A (2016), 235–254.
  • [Birch and Swinnerton-Dyer 65] B. J. Birch, H. P. F. Swinnerton-Dyer. “Notes on elliptic curves. II.” J. Reine Angew. Math. 218 (1965), 79–108.
  • [Bosch and Liu 99] S. Bosch, Q. Liu. “Rational points of the group of components of a Néron model.” Manuscr. Math. 98:3 (1999), 275–293.
  • [Bosch et al. 90] S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models. Berlin: Springer, 1990.
  • [Dokchitser 04] T. Dokchitser, “Computing special values of motivic L-functions.” Exp. Math. 13:2 (2004), 137–149.
  • [Flynn et al. 01] E. V. Flynn, F. Leprévost, E. F. Schaefer, W. A. Stein, M. Stoll, J. Wetherell, “Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves.” Math. Comp. 70:236 (2001), 1675–1697.
  • [Harrison 18] M. Harrison, Small hyperelliptic curves over Q. Retrieved on 26 June 2018 from https://people.maths.bris.ac.uk/∼matyd/HE/.
  • [Harvey et al. 16] D. Harvey, M. Massierer, A. S. Sutherland, “Computing L-series of geometrically hyperelliptic curves of genus three.” LMS J. Comput. Math. 19:suppl. A (2016), 220–234.
  • [Hindry and Silverman 2000] M. Hindry, J. H. Silverman. Diophantine geometry. An introduction. New York: Springer, 2000.
  • [Holmes 12] D. Holmes, “Computing Néron-Tate heights of points on hyperelliptic Jacobians.” J. Number Theory 132:6 (2012), 1295–1305.
  • [Kolyvagin 89] V. A. Kolyvagin, “Finiteness of E(Q) and Ш(E,Q) for a subclass of Weil curves.” Math. USSR-Izv. 32:3 (1989), 523–541.
  • [Kolyvagin 91] V. A. Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. International Congress of Mathematicians, vol. I, II (Kyoto, 1990), 429–436. Math. Soc. Japan, Tokyo, 1991.
  • [Liu 94] Q. Liu, “Conducteur et discriminant minimal de courbes de genre 2.” Compos. Math. 94:1 (1994), 51–79.
  • [Liu 96] Q. Liu, “Modèles entiers des courbes hyperelliptiques sur un corps de valuation discrète.” Trans. Amer. Math. Soc. 348:11 (1996), 4577–4610.
  • [Liu 02] Q. Liu, Algebraic geometry and arithmetic curves. Oxford: Oxford University Press, 2002. Translated by R. Erné.
  • [LMFDB] The LMFDB Collaboration, The L-functions and Modular Forms Database. Available at: http://www.lmfdb.org.
  • [Milne 72] J. S. Milne, “On the arithmetic of abelian varieties.” Invent. Math. 17 (1972), 177–190.
  • [Milne 86] J. S. Milne, “Jacobian varieties.” In Arithmetic geometry (Storrs, Conn., 1984), pp. 167–212. Springer, New York, 1986.
  • [Müller 14] J. S. Müller, “Computing canonical heights using arithmetic intersection theory.” Math. Comp. 83:285 (2014), 311–336.
  • [Müller and Stoll 16] J. S. Müller, M. Stoll, “Canonical heights on genus-2 Jacobians.” Algebra Number Theory 10:10 (2016), 2153–2234.
  • [Poonen and Stoll 99] B. Poonen, M. Stoll, “The Cassels-Tate pairing on polarized abelian varieties.” Ann. Math. 150:3 (1999), 1109–1149.
  • [Raynaud 70] M. Raynaud, “Spécialisation du foncteur de Picard.” Inst. Hautes Études Sci. Publ. Math. 38 (1970), 27–76.
  • [Serre 70] J. P. Serre, “Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures).” Séminaire Delange-Pisot Poitou. Théorie des nombres, 11 (1969–1970), no. 2, Talk no. 19, pp. 1–15.
  • [Tate 66] J. Tate, “On the conjectures of Birch and Swinnerton-Dyer and a geometric analog.” Séminaire Bourbaki, 9 (1964–1966), Exp. No. 306, pp. 415–440