88
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

On the Cohomology Groups of Real Lagrangians in Calabi–Yau Threefolds

& ORCID Icon

References

  • Argüz, H. (2021). Real loci in (log) Calabi -Yau manifolds via Kato -Nakayama spaces of toric degenerations. European Journal of Mathematics. 10.1007/s40879-021-00454-z
  • Argz¨, H., Prince, T. (2021). A Note on Schoen’s Calabi–Yau Threefolds, Rendiconti Seminario Matematico Torino, Vol.79, 1, 15–20.
  • Argüz, H., Prince, T. (2019). Real Lagrangians in Calabi–Yau threefolds, Proceedings of the London Mathematical Society. arXiv:1908.06685 [math.AG].
  • Aspinwall, P. S., Bridgeland, T., Craw, A., Douglas, M. R., Kapustin, A., Moore, G. W., Gross, M., Segal, G., Szendröi, B., Wilson, P. M. H. (2009). Dirichlet Branes and Mirror Symmetry, Vol. 4 of Clay Mathematics Monographs. Providence, RI: AMS.
  • Aspinwall, P. S., Plesser, M. R. (2015). General mirror pairs for gauged linear sigma models. J. High Energy Phys. 2015(11): 1–33.
  • Auroux, D. (2009, October). Lecture notes: Topics in geometry. Available at: math.berkeley.edu/∼auroux/18.969-S09/mirrorsymm-lect6.pdf.
  • Auslander, L., Markus, L. (1955). Holonomy of flat affinely connected manifolds. Ann. Math. (2), 62: 139–151.
  • Auslander, L. (1964). The structure of complete locally affine manifolds. Topology, 3(suppl. 1): 131–139.
  • Batyrev, V. V. (1999). On the classification of toric Fano 4-folds. J. Math. Sci. (New York), 94(1): 1021–1050. doi:10.1007/BF02367245
  • Batyrev, V., Kreuzer, M. (2006). Integral cohomology and mirror symmetry for Calabi-Yau 3-folds. In: Noriko Yui, Shing-Tung Yau and James D. Lewis (Editors), Mirror Symmetry. V, volume 38 of AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc., pp. 255–270.
  • Batyrev, V. V. (1994). Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom., 3(3): 493–535.
  • Batyrev, V. V., Borisov, L. A. (1996). Mirror duality and string-theoretic Hodge numbers. Invent. Math. 126(1): 183–203.
  • Batyrev, V. V., Borisov, L. A. (1996). On Calabi-Yau complete intersections in toric varieties. In Marco Andreatta, and Thomas Peternell (Editors), Higher-Dimensional Complex Varieties (Trento, 1994). Berlin: de Gruyter, pp. 39–65.
  • Bihan, F . (2003). Asymptotic behaviour of Betti numbers of real algebraic surfaces. Comment. Math. Helv. 78(2): 227–244. doi:10.1007/s000140300010
  • Biss, D., Guillemin, V. W., Holm, T. S. (2004).The mod2 cohomology of fixed point sets of anti-symplectic involutions. Adv. Math. 185(2): 370–399.
  • Bosma, W., Cannon, J., Playoust, C. (1997). The Magma algebra system. I. The user language. J. Symbolic Comput. 24(3/4): 235–265. doi:10.1006/jsco.1996.0125
  • Brown, G., Kasprzyk, A. Graded Ring Database. Available at: http://www.grdb.co.uk/.
  • Candelas, P., Lynker, M., and Schimmrigk, R. (1990). Calabi-Yau manifolds in weighted P4Z(HTML translation failed). Nuclear Phys. B. 341(2): 383–402.
  • Candelas, P., de la Ossa, X. C., Green, P. S., Parkes, L. (1991). A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B, 359(1): 21–74.
  • Castaño Bernard, R., Matessi, D. (2010). The fixed point set of anti-symplectic involutions of Lagrangian fibrations. Rend. Semin. Mat. Univ. Politec. Torino. 68(3): 235–250.
  • Bernard, R. C., Matessi, D. Lagrangian 3-torus fibrations. J. Differential Geom., 81(3): 483–573, 2009. doi:10.4310/jdg/1236604343
  • Bernard, R. C., Matessi, D., Solomon, J. P. (2010). Symmetries of Lagrangian fibrations. Adv. Math., 225(3):1341–1386.
  • Chan, K. (2014), The Strominger–Yau–Zaslow conjecture and its impact. Adv. Lect. Math., 29(2): 1183–1208.
  • Dixon, L. J. (1988). Some world-sheet properties of superstring compactifications, on orbifolds and otherwise. In Superstrings, Unified Theories and Cosmology 1987 (Trieste, 1987), Vol. 4 of ICTP Ser. Theoret. Phys. Teaneck, NJ: World Sci. Publ., pp. 67–126.
  • Finashin, S., Kharlamov, V. (2019), First homology of a real cubic is generated by lines. arXiv: 1911.07008.
  • Gompf, R. E., Stipsicz, A. I. (1999). 4-Manifolds and Kirby Calculus, Vol. 20 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society.
  • Greene, B. R., Plesser, M. R. (1990). Duality in Calabi-Yau moduli space. Nuclear Phys. B, 338(1): 15–37.
  • Gross, M., Huybrechts, D., and Joyce, D. (2003). Calabi-Yau manifolds and related geometries. Berlin: Springer-Verlag. Universitext. Lectures from the Summer School held in Nordfjordeid, June 2001.
  • Gross, M. (2001). Special Lagrangian fibrations. I. Topology. In: Cumrun Vafa and Shing-Tung Yau (Editors), Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999), Vol. 23 of AMS/IP Stud. Adv. Math. Providence, RI: Amer. Math. Soc., pp. 65–93
  • Gross, M. (2001). Topological mirror symmetry. Invent. Math., 144(1): 75–137.
  • Gross, M. (2005). Toric degenerations and Batyrev-Borisov duality. Math. Ann., 333(3): 645–688.
  • Gross, M. (2012), Mirror symmetry and the Strominger-Yau-Zaslow conjecture. arXiv:1212.4220.
  • Gross, M., Siebert, B. (2006). Mirror symmetry via logarithmic degeneration data. I. J. Differential Geom., 72(2): 169–338.
  • Gross, M., Siebert, B. (2011). From real affine geometry to complex geometry. Ann. Math. (2), 174(3): 1301–1428. doi:10.4007/annals.2011.174.3.1
  • Haase, C., Zharkov, I. (2005). Integral affine structures on spheres: Complete intersections. Int. Math. Res. Not., 3153–3167, doi:10.1155/IMRN.2005.3153
  • Hausel, T., Thaddeus, M. (2003). Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1): 197–229.
  • Itenberg, I. (1997). Topology of real algebraic T-surfaces. In: M. E. Alonso, C. Andradas, J. M. Gamboa, T. Recio, and J. M. Ruiz (Editors), Revista Matemática de la. Madrid: Universidad Complutense.
  • Itenberg, I., Katzarkov, L., Mikhalkin, G., Zharkov, I. (2019). Tropical homology. Mathematische Annalen, 374(1/2): 963–1006.
  • Itenberg, I., Viro, O. (2006). Asymptotically maximal real algebraic hypersurfaces of projective space. In Selman Akbulut, Turgut Önder, and Ronald J. Stern (Editors), Proceedings of Gökova Geometry/Topology Conference, pp. 91–105. Citeseer.
  • Lerche, W., Vafa, C., and Warner, N. P. (1989). Chiral rings in N = 2 superconformal theories. Nuclear Phys. B. 324(2): 427–474.
  • Prince, T. M. (2020). Cohomology groups of real Lagrangians in Calabi–Yau–threefolds. Available at: https://github.com/T-Prince/Cohomology-groups-of-real-Lagrangians-in-Calabi-Yau-threefolds.
  • Renaudineau, A., Shaw, K. (2018). Bounding the Betti numbers of real hypersurfaces near the tropical limit. arXiv:1805.02030.
  • Ruddat, H., Mak, C. Y. (2019). Tropically constructed Lagrangians in mirror quintic threefolds. arXiv:1904.11780 [math.SG].
  • Ruddat, H., Zharkov, I. (2020). Compactifying torus fibrations over integral affine manifolds with singularities. arXiv:2003.08521 [math.AG].
  • Ruddat, H., and Zharkov, I. (2020). Tailoring a pair of pants. arXiv:2001.08267 [math.AG].
  • Eröcal, B., Stein, W. (2010). The Sage project: unifying free mathematical software to create a viable alternative to Magma, Maple, Mathematica and MATLAB. Mathematical software–ICMS 2010, 12–27, Lecture Notes in Comput. Sci., 6327, Springer, Berlin.
  • Strominger, A., Yau, S.-T., Zaslow, E. (1996). Mirror symmetry is T-duality. Nuclear Phys. B. 479(1-2): 243–259.
  • Zharkov, I. (2000), Torus fibrations of Calabi-Yau hypersurfaces in toric varieties. Duke Math. J., 101(2): 237–257. doi:10.1215/S0012-7094-00-10124-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.