59
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gaps Between Consecutive Primes and the Exponential Distribution

ORCID Icon

References

  • Bar-Lev, S. K., Enis, P. (1986). Reproducibility and natural exponential families with power variance functions. Ann. Stat. 14(4): 1507–1522.
  • Bar-Lev, S. K., Stramer, O. (1987). Characterizations of natural exponential families with power variance functions by zero regression properties. Probab. Theory Related Fields 76: 509–522. 10.1007/BF00960071
  • Bingham, N. H., Goldie, C. M., Teugels, J. L. (1987). Regular Variation, Encyclopedia of Mathematics and its Applications. Cambridge, England: Cambridge University Press.
  • Cohen, J. E. (2016). Statistics of primes (and probably twin primes) satisfy Taylor’s law from ecology. Amer. Stat. 70(4): 399–404. 10.1080/00031305.2016.1173591
  • Cohen, J. E. (2020). Species-abundance distributions and Taylor’s power law of fluctuation scaling. Theor. Ecol. 13(4): 607–614. 10.1007/s12080-020-00470-x
  • Cohen, J. E. (2023). Integer sequences with regularly varying counting functions have power-law variance functions. Integers 23(A87): 1–19.
  • Cohen, M. P. (2017). Non-asymptotic mean and variance also approximately satisfy Taylor’s law. Amer. Stat. 71(2): 187. 10.1080/00031305.2017.1286261
  • Cramér, H. (1936). On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2(1): 23–46. 10.4064/aa-2-1-23-46
  • Crandall, R., Pomerance, C. (2005). Prime Numbers–A Computational Approach, 2nd ed. New York: Springer.
  • Cutter, P. A. (2001). Finding prime pairs with particular gaps. Math. Comp. 70(236): 1737–1744. 10.1090/S0025-5718-01-01327-8
  • Davidian, M., Carroll, R. J. (1987). Variance function estimation. J. Amer. Stat. Assoc., 82(400): 1079–1091. 10.1080/01621459.1987.10478543
  • Demers, S. (2018). Taylor’s law holds for finite OEIS integer sequences and binomial coefficients. Amer. Stat. 72(4): 376–378. 10.1080/00031305.2017.1422439
  • Dickson, L. G. (1919). History of the Theory of Numbers, Volume I: Divisibility and Primality, Vol. 256(1). Washington, DC: Carnegie Institution of Washington.
  • Eisler, Z., Bartos, I., Kertész, J. (2008). Fluctuation scaling in complex systems: Taylor’s law and beyond. Adv. Phys. 57(1): 89–142.
  • Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed. New York: Wiley.
  • Gallagher, P. X. (1981). On the distribution of primes in short intervals. Mathematika 23(1): 4–9. Corrigendum, Mathematika 28: 86.
  • Granville, A. (1995). Harald Cramér and the distribution of prime numbers. Scand. Actuar. J. 1: 12–28. 10.1080/03461238.1995.10413946
  • Grimmett, G. R., Stirzaker, D. R. (2001). Probability and Random Processes, 3rd ed. New York: Oxford University Press.
  • Guy, R. K. (1994). Unsolved Problems in Number Theory, 2nd ed. New York: Springer Verlag.
  • Hardy, G. H., Littlewood, J. E. (1966). Some problems of ‘partitio numerorum’: III: On the expression of a number as a sum of primes. Acta Math. 44:1–70. Reprinted in “Collected Papers of G. H. Hardy,” Vol. I, pp. 561–630. Oxford: Clarendon Press. 10.1007/BF02403921
  • Heath-Brown, D. R. (1992). Gaps between primes and the pair correlation of zeros of the zeta-function. Acta Arith. 41: 85–99. 10.4064/aa-41-1-85-99
  • Holst, L. (1980). On the lengths of the pieces of a stick broken at random. J. Appl. Probab. 17: 623–634. 10.1017/S0021900200033738
  • Kourbatov, A. (2015). Upper bounds for prime gaps related to Firoozbakht’s conjecture. arXiv 1506.03042v4.
  • Maier, H. (1981). Chains of large gaps between consecutive primes. Adv. Math. 39(3): 257–269. 10.1016/0001-8708(81)90003-7
  • Maier, H. (1985). Primes in short intervals. Michigan Math. J. 32(2): 221–225. 10.1307/mmj/1029003189
  • Marshall, A. W., Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Series in Statistics. New York: Springer.
  • Massachusetts Institute of Technology. (2013). Large deviations for i.i.d. random variables, Advanced Stochastic Processes. Available at: https://ocw.mit.edu/courses/15-070j-advanced-stochastic-processes-fall-2013/ed35842f2e902421e4a6cdd4d9eca6fe_MIT15_070JF13_Lec2.pdf. [Online; accessed 13-April-2024].
  • Oliveira e Silva, T., Herzog, S., Pardi, S. (2014). Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4×1018. Math. Comp. 83(288): 2033–2060.
  • Riesel, H. (1994). Prime Numbers and Computer Methods for Factorization. Progress in Mathematics, Vol. 126, 2nd ed. Boston: Birkhauser.
  • Sarhan, A. E., Greenberg, B. G., eds. (1962). Contributions to Order Statistics. New York, London: Wiley.
  • Schmüdgen, K. (2020). Ten lectures on the moment problem. Available at: 10.48550/arXiv.2008.12698. arXiv:2008.12698v1 [math.FA].
  • Shanks, D. (1964). On maximal gaps between successive primes. Math. Comp. 18(88): 646–651. 10.1090/S0025-5718-1964-0167472-8
  • Taylor, R. A. J. (2019). Taylor’s Power Law: Order and Pattern in Nature. New York: Academic Press.
  • Tweedie, M. C. K. (1946). The regression of the sample variance on the sample mean. J. London. Math. Soc. 21: 22–28. 10.1112/jlms/s1-21.1.22
  • Tweedie, M. C. K. (1947). Functions of a statistical variate with given means, with special reference to Laplacian distributions. Proc. Cambridge Philos. Soc. 43: 41–49. 10.1017/S0305004100023185
  • Tweedie, M. C. K. (1984). An index which distinguishes between some important exponential families. In: Ghosh, J. K., Roy, J., eds. Statistics: Applications and New Directions. Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, pp. 579–604, Calcutta, 1984. Indian Statistical Institute.
  • Wikipedia contributors. (2022). Prime gap—Wikipedia, the free encyclopedia. Available at: https://en.wikipedia.org/w/index.php?title=Prime_gap&oldid=1113313971. [Online; accessed 13-November-2022].
  • Wikipedia contributors. (2023). Firoozbakht’s conjecture—Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=Firoozbakht%27s_conjecture&oldid=1167645599. [Online; accessed 10-April-2024].
  • Wolf, M. (1998). Some conjectures on the gaps between consecutive primes. Available at: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.3015&rep=rep1&type=pdf and http://pracownicy.uksw.edu.pl/mwolf/conjectures.ps, 1998. Preprint accessed 2022-09-23.
  • Wolf, M. (2014). Nearest-neighbor-spacing distribution of prime numbers and quantum chaos. Phys. Rev. E 89: 022922. 10.1103/PhysRevE.89.022922
  • Wolf, M. (2017). On the moments of the gaps between consecutive primes. arXiv:1705.10766v1.
  • Yamasaki, Y., Yamasaki, A. (1994). On the gap distribution of prime numbers. Notes Res Inst. Math. Anal. Kyoto Univ. 887: 151–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.