497
Views
20
CrossRef citations to date
0
Altmetric
Articles

Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR

, , &
Pages 267-287 | Received 24 Jun 2015, Accepted 12 Oct 2015, Published online: 13 Dec 2015

References

  • AASHTO. Mechanistic-empirical pavement design guide: a manual of practice. Washington, DC: American Association of State Highway Officials and Transportation Officials; 2008.
  • Al-Qadi IL, Lahouar S, Loulizi A. GPR: from the state-of-the-art to the state-of-the-practice. In: International Symposium of Non-destructive Testing in Civil Engineering. Proceedings BB85-CD; 2003 Sep.; Berlin, Germany: The German Society for Non-Destructive Testing (DGZfp). p. 16–19.
  • AL-Qadi I, Lahouar S. Measuring layer thicknesses with GPR–theory to practice. Constr. Build. Mater. 2005;19:763–772.10.1016/j.conbuildmat.2005.06.005
  • Al-Qadi IL, Leng Z, Lahouar S, et al. In-place hot-mix asphalt density estimation using ground-penetrating radar. Transp. Res. Rec.: J. Transp. Res. Board. 2010;2152:19–27.10.3141/2152-03
  • Lahouar S, Al-Qadi IL. Automatic detection of multiple pavement layers from GPR data. NDT & E Int. 2008;41:69–81.
  • Cao Y, Guzina BB, Labuz JF. Pavement evaluation using ground penetrating radar. St. Paul (MN): Minnesota Department of Transportation; 2008.
  • Evans R, Frost M, Stonecliffe-Jones M, et al. A review of pavement assessment using ground penetrating radar (GPR). In: Rogers CDF, Chignell RJ, editors. 12th International Conference on Ground Penetrating Radar. Proceedings; 2008 Jun. 16–19; Birmingham, UK; 2008.
  • Plati C, Loizos A. Using ground-penetrating radar for assessing the structural needs of asphalt pavements. Nondestr. Test. Eval. 2012;27:273–284.10.1080/10589759.2012.695784
  • Goel A, Das A. Nondestructive testing of asphalt pavements for structural condition evaluation: a state of the art. Nondestr. Test. Eval. 2008;23:121–140.10.1080/10589750701848697
  • Poikajärvi J, Peisa K, Herronen T, et al. GPR in road investigations – equipment tests and quality assurance of new asphalt pavement. Nondestr. Test. Eval. 2012;27:293–303.10.1080/10589759.2012.695786
  • Moropoulou A, Avdelidis NP, Koui M, et al. Infrared thermography and ground penetrating radar for airport pavements assessment. Nondestr. Test. Eval. 2002;18:37–42.10.1080/10589750290026574
  • Loizos A, Plati C. Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches. NDT & E Int. 2007;40:147–157.
  • Al-Qadi IL, Lahouar S, Loulizi A. Successful application of ground-penetrating radar for quality assurance-quality control of new pavements. Transp. Res. Rec.: J. Transp. Res. Board. 2003;1861:86–97.10.3141/1861-10
  • Grote K, Hubbard S, Harvey J, et al. Evaluation of infiltration in layered pavements using surface GPR reflection techniques. J. Appl. Geophys. 2005;57:129–153.10.1016/j.jappgeo.2004.10.002
  • White DJ, Becker P, Vennapusa PK, et al. Assessing soil stiffness of stabilized pavement foundations. Transp. Res. Rec.: J. Transp. Res. Board. 2013;2335:99–109.10.3141/2335-11
  • Daniels JJ. Fundamentals of ground penetrating radar. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems. Proceedings; 1989 March 13–16; Environment and Engineering Geophysical Society; 1989.
  • GSSI. GSSI handbook for RADAR inspection of concrete. Salem (NH): Geophysical Survey Systems, Inc; 2006.
  • Loken MC. Use of ground penetrating radar to evaluate Minnesota roads. St. Paul (MN): Minnesota Department of Transportation; 2007.
  • Davis JL, Annan AP. Ground-penetrating RADAR for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989;37:531–551.10.1111/gpr.1989.37.issue-5
  • Willett DA, Rister B. Ground penetrating radar pavement layer thickness evaluation. Lexington: Kentucky Transportation Center; 2002.
  • Irwin HL, Yang W, Stubstad R. Deflection reading accuracy and layer thickness accuracy of pavement layer moduli. Nondestructive testing of pavements and backcalculation of pavement layer moduli. West Conshohocken (PA): ASTM STP1026:229-44; 1989.
  • Lalague A, Lebens MA, Hoff I. Accuracy of ground penetrating radar in pavement thickness evaluation – impact of interpretation errors. In: Transport Research Arena: Transport Solutions from Research to Deployment. Proceedings. 2014 Apr. 14–17; Paris, France: Institut Francais des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux (IFSTTAR); 2014.
  • Lalagüe A, Hoff I, Accuracy of ground penetrating radar in bituminous pavement thickness evaluation. In: Transport Research Arena 2010. Proceedings; 2014; Brussels, Belgium.
  • Saarenketo T, Scullion T. Using electrical properties to classify the strength properties of base course aggregates. College Station (TX): Texas Transportation Institute; 1995.
  • Halabe UB, Maser K, Kausel E. Condition assessment of reinforced concrete using EM waves. Cambridge (MA): Massachusetts Institute of Technology; 1989.
  • Maser K, Scullion T. Influence of asphalt layering and surface treatments on asphalt base layer thickness computations using radar. Report No. TX-92-1923-1. College Station (TX): Texas Transportation Institute; 1992.
  • Scullion T, Chen Y, Lau CL. COLORMAP-user’s manual with case studies. Report No. FHWA/TX-96/1341-1. College Station (TX): Texas Transportation Institute; 1995.
  • Topp GC, Davis JL, Annan AP. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour. Res. 1980;16:574–582.10.1029/WR016i003p00574
  • Grove J, Jones K, Ye D, et al. Nondestructive tests of thickness measurements for concrete pavements. Transp. Res. Rec.: J. Transp. Res. Board. 2012;2268:61–67.10.3141/2268-08
  • ASTM. ASTM D6951 – 03 standard test method for use of the dynamic cone penetrometer in shallow pavement applications. West Conshohocken (PA): ASTM International; 2003.
  • Decagon. GS3 water content, EC and temperature sensors operator’s manual. Pullman (WA): Decagon Devices, Inc.; 2015.
  • ASTM. ASTM D698-13 Standard test methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3(600 kN-m/m3)). West Conshohocken (PA): ASTM International; 2013.
  • Hallikainen M. Dielectric properties of NaCl ice at 16 GHz. Report No. S-1107. Espoo, Finland: Helsinki University of Technology, Radio Laboratory; 1977.
  • Makul N. Dielectric permittivity of various cement-based materials during the first 24 hours hydration. Open J. Inorg. Non-Met. Mater. 2013;3:53–57.
  • White DJ, Vennapusa P. Rapid in situ measurement of hydraulic conductivity for granular pavement foundations. In: Abu-Farsakh M, Yu X, Hoyos LR, editors. Geo-Congress 2014 Technical Papers. Proceedings; 2014 Feb. 23–26; Atlanta (GA), USA: American Society of Civil Engineers; 2014. p. 3005–3014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.