1,396
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A simplified modal-based method to quantify delamination in carbon fibre-reinforced plastic beam

, , , , ORCID Icon &
Pages 283-298 | Received 06 Sep 2018, Accepted 10 Feb 2019, Published online: 25 Mar 2019

References

  • Modeling Cracks and Delaminations in Carbon Fiber Composites, Center for Nondestructive Evaluation. Iowa state University. Carbon fiber composite laminates. Available from 2018 Dec 24: https://www.cnde.iastate.edu/research/ultrasonic/ultrasonic-and-composites/modeling-cracks-and-delaminations-in-carbon-fiber-composites/
  • Trendafilova I, Palazzetti R, Zucchelli A. Delamination assessment in structures made of composites based on general signal correlation. Int J Str Stab Dyn. 2014;14(08):1440022.
  • Zou Y, Tong LPSG, Steven GP. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J Sound Vib. 2000;230(2):357–378.
  • Katunin A, Dragan K, Dziendzikowski M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos Struct. 2015;127:1–9.
  • Jasinien E, Raiutis R, Voleiis A, et al. NDT of wind turbine blades using adapted ultrasonic and radiographic techniques. Insight-Non-Destructive Test Condition Monit. 2009;51(9):477–483.
  • Boominathan R, Arumugam V, Santulli C, et al. Acoustic emission characterization of the temperature effect on falling weight impact damage in carbon/epoxy laminates. Compos Part B Eng. 2014;56:591–598.
  • Antunes P, Varum H, Andréa P. Optical FBG sensors for static structural health monitoring. Procedia Eng. 2011;14:1564–1571.
  • Todoroki A, Tanaka M, Shimamura Y. Electrical resistance change method for monitoring delaminations of CFRP laminates: effect of spacing between electrodes. Compos Sci Technol. 2005;65(1):37–46.
  • Yin L, Wang XM, Shen YP. Damage-monitoring in composite laminates by piezoelectric films. Comput Struct. 1996;59(4):623–630.
  • Della CN, Shu D. Vibration of delaminated composite laminates: A review. Appl Mech Rev. 2007;60(1):1–20.
  • Montalvao D, Maia NMM, Ribeiro AMR. A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock Vib Dig. 2006;38:295–324.
  • Cao M, Radzien´Ski M, Xu W, et al. Identification of multiple damage in beams based on robust curvature mode shapes. Mech Syst Sig Process. 2014;46(2):468–480.
  • Roy K, Agrawal S, Bhattacharya B, et al. Fundamental mode shape to localize delamination in cantilever composite plates using laser doppler vibrometer. In: Advances in structural engineering. Indian Institute of Technology. New Delhi: Springer; 2015. p. 2621–2633.
  • Salawu OS, Williams C. Structural damage detection using experimental modal analysis - a comparison of some methods. In: Proceedings of the 11th International Modal Analysis Conference. The International Society for Optical Engineering. 1993. p. 254–260.
  • Salawu OS, Williams C. Damage location using vibration mode shapes. In: Proceedings of the 12th International Modal Analysis Conference, Honolulu, Hawaii, USA. 1994. p. 933–939.
  • Lam HF, Ko JM, Wang CW. Detection of damage location based on sensitivity analysis. In: Proceedings of the 13th International Modal Analysis Conference, Nashville, Tennessee, USA. 1995. p. 1499–1505.
  • Thyagarajanm SK, Schulz J, Pf P. Detecting structural damage using frequency response functions. J Sound Vib. 1998;210:162–170.
  • Gomes AJMA, Silva JMME. On the use of modal analysis for crack identification. In: Proceedings of the 8th International Modal Analysis Conference. FL; 1991. p. 1108–1115.
  • Okafor AC, Chandrashekhara K, Jiang YP. Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network. Smart Mater Struct. 1996;5:338–347.
  • Chakraborty D. Artificial neural network based delamination prediction in laminated composites. Mater Des. 2005;26:1–7.
  • Salawu OS. Detection of structural damage through changes in frequency: a review. Eng Struct. 1997;19:718–723.
  • Yang Z, Wang L, Wang H, et al. Damage detection in composite structures using vibration response under stochastic excitation. J Sound Vib. 2009;325:755–768.
  • Modena C, Sonda D, Zonta D. Damage localization in reinforced concrete structures by using damping measurements. Key Eng Mater. 1999;167:132–141.
  • Wenguang L, Mark EB. The effects of breathing behaviour on crack growth of a vibrating beam. Shock Vib. 2018;12:2018. Article ID 2579419.
  • Ouahabi A, Thomas M, Lakis AA. Detection of damage in beams and composite plates by harmonic excitation and time-frequency analysis. In: Proceedings of the 3rd European Workshop on Structural Health Monitoring. Granada, Spain; 2006. p. 775–782.
  • Actis R, Dimarogonas AD. Non-linear effects due to closing cracks in vibrating beams. Am Soc Mech Eng Des Eng Div. 1989;18:99–104.
  • Hou Z, Noori M, Amand RS. Wavelet-based approach for structural damage detection. J Eng Mech. 2000;126(7):677–683.
  • Nichols JM, Seaver M, Trickey ST. A method for detecting damage-induced nonlinearities in structures using information theory. J Sound Vib. 2009;322:438–453.
  • Torabi K, Shariati-Nia M, Heidari-Rarani M. Moving support technique for delaminatoin detection in laminated composite beams using the first natural frequency. J Reinf Plast Compos. 2017;36(15):1116–1128.
  • Xuan Z, Dongsheng L, Gangbing S. Structure damage identification based on regularized ARMA time series model under environmental excitation. Vibration. 2018;1:138.
  • Gauthier PE, Gontier C, Smail M. Robustness of an ARMA identification method for modal analysis of mechanical systems in the presence of noise. J Sound Vib. 1995;179(2):227–242.