937
Views
40
CrossRef citations to date
0
Altmetric
Reviews

A review of microwave testing of glass fibre-reinforced polymer composites

ORCID Icon, , ORCID Icon, &
Pages 429-458 | Received 02 Nov 2018, Accepted 07 Apr 2019, Published online: 29 Apr 2019

References

  • Soutis C. Fibre reinforced composites in aircraft construction. Prog Aerosp Sci. 2005;41:143–151.
  • Diamanti K, Hodgkinson JM, Soutis C. Detection of low-velocity impact damage in composite plates using lamb waves. Struct Heal Monit. 2004;3:33–41.
  • Giurgiutiu V, Soutis C. Enhanced composites integrity through structural health monitoring. Appl Compos Mater. 2012;19:813–829.
  • Gresil M, Saleh M, Soutis C. Transverse crack detection in 3D angle interlock glass fibre composites using acoustic emission. Materials (Basel). 2016;9:699.
  • Gäbler S, Heuer H, Measuring HG. Imaging permittivity of insulators using high-frequency eddy-current devices. IEEE Trans Instrum Meas. 2015;64:2227–2238.
  • Mieloszyk M, Majewska K, Ostachowicz W. THz spectroscopy application for detection and localisation of water inclusion in glass composite. Compos Struct. 2018;192:537–544.
  • Yu B, Blanc R, Soutis C, et al. Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension-tension loading observed by time-lapse X-ray tomography. Compos Part A Appl Sci Manuf. 2016;82:279–290.
  • Lee WI, Springer GS. Microwave curing of composites. J Compos Mater. 1984;18:387–409.
  • Green JE, Nuhiji B, Zivtins K, et al. Internal model control of a domestic microwave for carbon composite curing. IEEE Trans Microw Theory Tech. 2017;65:4335–4346.
  • Li Z, Haigh A, Soutis C, et al. X-band microwave characterisation and analysis of carbon fibre-reinforced polymer composites. Compos Struct. 2019;208:224–232.
  • Zoughi R, Gray SD, Nowak PS. Microwave nondestructive estimation of cement paste compressive strength. ACI Mater J. 1995;92:64–70.
  • Wilson WC, Moore JP, Juarez PD Remote strain sensing of CFRP using microwave frequency domain reflectometry. 2016 IEEE Natl. Aerosp. Electron. Conf. Ohio Innov. Summit, Dayton, OH,US: IEEE; 2016, p. 401–406.
  • Daliri A, Galehdar A, Rowe WST, et al. Utilising microstrip patch antenna strain sensors for structural health monitoring. J Intell Mater Syst Struct. 2012;23:169–182.
  • Kharkovsky S, Zoughi R. Microwave and millimeter wave nondestructive testing and evaluation - overview and recent advances. IEEE Instrum Meas Mag. 2007;10:26–38.
  • Li Z, Haigh A, Soutis C, et al. Principles and applications of microwave testing for woven and non-woven carbon fibre-reinforced polymer composites: a topical review. Appl Compos Mater. 2018;25:965–982.
  • Li Z, Haigh A, Soutis C, et al. Applications of microwave techniques for aerospace composites. 2017 IEEE Int. Conf. Microwaves, Antennas, Commun. Electron. Syst., vol. 2017–Novem, Tel Aviv,Israel: IEEE; 2017, p. 1–4.
  • Haigh AD. A study of microwave moisture measurement in bulk materials, Doctoral Thesis. Manchester, UK: Manchester Metropolitan University; 1994.
  • Gray S, Ganchev S, Qaddoumi N, et al. Porosity level estimation in polymer composites using microwaves. Mater Eval. 1995;53:404–408.
  • Forssell B Non-destructive measurements of the glass-fibre content in reinforced plastics by means of microwaves. 4th Eur. Microw. Conf . 1974, Montreux, Switzerland: IEEE; 1974, p. 132–136.doi: 10.1109/EUMA.1974.332027
  • Carriveau GW. Benchmarking of the state-of-the-art in nondestructive testing/evaluation for applicapility in the composite armored vehicle advanced technology demonstrator program. San Antonio: The nondestructive testing information center (NTIAC); 1993. http://www.dtic.mil/dtic/tr/fulltext/u2/a276660.pdf
  • Dobmann G, Altpeter I, Sklarczyk C, et al. Non-destructive testing with micro-and MM-waves - where we are - where we go. Weld World. 2012;56:111–120.
  • Case JT, Kenderian S. Microwave NDT: an inspection method. Mater Eval. 2017;75:339–346.
  • Pozar DM. Microwave Engineering. Vol. 47. Fourth ed. New York: John Wiley & Sons; 2012.
  • AGY Strength in materials n.d. [cited 2019 April 20]. Available from: http://www.agy.com/.
  • Wilson LK, Salerno JP. Microwave curing of epoxy resins. Nashville,Tennessee, USA: Vanderbilt University; 1978.
  • Summerscales J. non-destructive testing of fibre-reinforced plastics composites . 1990. Rotterdam, Netherlands: Springer Netherlands; 1990.
  • Micheli D, Apollo C, Pastore R, et al. X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation. Compos Sci Technol. 2010;70:400–409.
  • Li Z, Haigh A, Soutis C, et al. Dielectric constant of a three-dimensional woven glass fibre composite: analysis and measurement. Compos Struct. 2017;180:853–861.
  • Hong W, Xiao P, Li Z, et al. Microwave radial dielectric properties of carbon fiber bundle: modeling, validation and application. Carbon N Y. 2014;79:538–543.
  • Sihvola A. Electromagnetic mixing formulas and applications. London, UK: The Institution of Engineering and Technology; 1999.
  • Bal K, Kothari VK. Permittivity of woven fabrics: A comparison of dielectric formulas for air-fiber mixture. IEEE Trans Dielectr Electr Insul. 2010;17:881–889.
  • Chin WS, Lee DG. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite. Compos Struct. 2006;74:153–162.
  • Chin WS, Lee DG. Laminating rule for predicting the dielectric properties of E-glass/epoxy laminate composite. Compos Struct. 2007;77:373–382.
  • Li Z, Haigh A, Soutis C, et al. Microwaves sensor for wind turbine blade inspection. Appl Compos Mater. 2017;24:495–512.
  • Balanis CA. Antenna theory: analysis and design. 3rd ed. New Jersey: John Wiley & Sons; 2005.
  • Djuknic GM. Method of measuring a pattern of electromagnetic radation. US patent. 2002; 6,657,596 B2.
  • Kapilevich BY, Harmer SW, Bowring NJ. Non-imaging microwave and millimetre-wave sensors for concealed object detection. New York: CRC Press; 2014.
  • ASTM-D7449M-14. Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies using coaxial air line. West Conshohocken, PA, USA: ASTM International; 2014.
  • ASTM-D5568-08. Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies using waveguide. West Conshohocken, PA, USA: ASTM International; 2008.
  • Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas. 1970;19:377–382.
  • Tischer FJ. Measurement of the wave-propagation properties of plasma in the microwave region. IRE Trans Instrum. 1960;I-9:167–171.
  • Foudazi A, Donnell KM. Effect of sample preparation on microwave material characterization by loaded waveguide technique. IEEE Trans Instrum Meas. 2016;65:1669–1677.
  • Bakhtiari S, Ganchev SI, Zoughi R. Analysis of radiation from an open-ended coaxial line into stratified dielectrics. IEEE Trans Microw Theory Tech. 1994;42:1261–1267.
  • Ching-Lei L, Chen K-M, Li CL, et al. Determination of electromagnetic properties of materials using flanged open-ended coaxial probe-full-wave analysis. IEEE Trans Instrum Meas. 1995;44:19–27.
  • Tantot O, Chatard-Moulin M, Guillon P. Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method. IEEE Trans Instrum Meas. 1997;46:519–522.
  • Zoughi R. Microwave Non-Destructive Testing and Evaluation. Vol. 4. Dordrecht: Springer Netherlands; 2000.
  • Agilent Technologies. Agilent 85070E dielectric probe kit 200 MHz to 50 GHz - technical overview. Santa Clara, CA, USA; 2006.
  • Decreton MC, Gardiol FE. Simple nondestructive method for the measurement of complex permittivity. IEEE Trans Instrum Meas. 1974;23:434–438.
  • Bakhtiari S, Ganchev S, Zoughi R. A general formulation for admittance of an open-ended rectangular waveguide radiating into stratified dielectrics. Res Nondestruct Eval. 1995;7:75–87.
  • Stewart JW, Havrilla MJ. Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model. J Electromagn Waves Appl. 2006;20:2037–2052.
  • Bakhtiari S, Qaddoumi N, Ganchev SI, et al. Microwave noncontact examination of disbond and thickness variation in stratified composite media. IEEE Trans Microw Theory Tech. 1994;42:389–395.
  • Kempin M, Ghasr MT, Case JT, et al. Modified waveguide flange for evaluation of stratified composites. IEEE Trans Instrum Meas. 2014;63:1524–1534.
  • Li Z, Haigh A, Soutis C, et al. A simulation-assisted non-destructive approach for permittivity measurement using an open-ended microwave Waveguide. J Nondestruct Eval. 2018;37:39.
  • Chao S-H. An uncertainty analysis for the measurement of microwave conductivity and dielectric constant by the short-circuited line method. IEEE Trans Instrum Meas. 1986;IM-35:36–41.
  • Ghodgaonkar DK, Varadan VV, Varadan VK. A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies. IEEE Trans Instrum Meas. 1989;38:789–793.
  • Kraszewski A. Microwave aquametry—a review. J Microw Power. 1980;15:209–220.
  • Sen LC, Yang CL. Complementary split-ring resonators for measuring dielectric constants and loss tangents. IEEE Microw Wirel Compon Lett. 2014;24:563–565.
  • Ansari MAH, Jha AK, Akhter Z, et al. Multi-band RF planar sensor using complementary split ring resonator for testing of dielectric materials. IEEE Sens J. 2018;18:6596–6606.
  • Kraszewski AW, Nelson SO. Observations on resonant cavity perturbation by dielectric objects. IEEE Trans Microw Theory Tech. 1992;40:151–155.
  • Clarke RN, Rosenberg CB. Fabry-Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz. J Phys E. 1982;15:9–24.
  • Danilov I, Heidinger R. New approach for open resonator analysis for dielectric measurements at mm-wavelengths. J Eur Ceram Soc. 2003;23:2623–2626.
  • Kaczkowski A, Milewski A. High-accuracy wide-range measurement method for determination of complex permittivity in reentrant cavity: part B – experimental analysis of measurement errors. IEEE Trans Microw Theory Tech. 1980;28:228–231.
  • Haigh AD, Thompson F, Gibson AAP, et al. Analysis and design of a re-entrant microwave cavity for the characterisation of single wheat grain kernels. IEE Proc Sci Meas Technol. 2003;150:113–117.
  • Krupka J. Frequency domain complex permittivity measurements at microwave frequencies. Meas Sci Technol. 2006;17:R55–70.
  • Clarke RN, Gregory AP, Cannell D, et al. A guide to the characterisation of dielectric materials at RF and microwave frequencies. Teddington, UK: National Physical Laboratory (NPL); 2003.
  • Li Z. Radio frequency non-destructive evaluation of impact damage in carbon fibre composites. Manchester, UK: University of Manchester; 2017.
  • Qaddoumi N, Ganchev S, Zoughi R. Microwave diagnosis of low-density fiberglass composites with resin binder. Res Nondestruct Eval. 1996;8:177–188.
  • Umeda T, Miyashita T, Kako Y. new evaluation method of dielectric materials using a microwave technique. IEEE Trans Electr Insul. 1980;EI-15:340–349.
  • Qaddoumi N, Zoughi R, Carriveau GW. Microwave detection and depth determination of disbonds in low-permittivity and low-loss thick sandwich composites. Res Nondestruct Eval. 1996;8:51–63.
  • Greenawald EC. Microwave NDE of impact damaged fiberglass and elastomer layered composites. AIP Conf Proc. 2000;509(AIP):1263–1268.
  • Green G, Campbell P, Zoughi R An investigation into the potential of microwave NDE for maritime application. 16th World Conf. Non-Destructive Test, Montreal, Canada: 2004, p. 30–37.
  • Abou-Khousa MA, Ryley A, Kharkovsky S, et al. Comparison of X-Ray, millimeter wave, shearography and through-transmission ultrasonic methods for inspection of honeycomb composites. AIP Conf Proc. 2007;894(AIP):999–1006.
  • Hosoi A, Ju Y. Nondestructive detection of defects in GFRP laminates by microwaves. J Solid Mech Mater Eng. 2010;4:1711–1721.
  • Li Z, Haigh A, Soutis C, et al. Delamination detection in composite T-joints of wind turbine blades using microwaves. Adv Compos Lett. 2016;25:83–86.
  • Kovalev VP, Baranov GL, Kramar VK. Microwave determination of the mechanical strains in glass-reinforced plastic articles. Polym Mech. 1976;11:785–789.
  • Shafi KTM, Saif Ur Rahman M, Abou-Khousa MA, et al. Applied microwave imaging of composite structures using open-ended circular waveguide. 2017 IEEE Int. Conf. Imaging Syst. Tech, IEEE, Beijing, China; 2017, p. 1–5. doi: 10.1109/IST.2017.8261531
  • Saif Ur Rahman M, Yassin A, Abou-Khousa MA. Microwave imaging of thick composite structures using circular aperture probe. Meas Sci Technol. 2018;29:095403.
  • Wang P, Pei Y, Zhou L. Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures. NDT E Int. 2016;83:32–37.
  • Valiente LA, Haigh AD, Gibson AAP, et al. Proc. 37th eur. microw. conf. EUMC. In: Coplanar waveguide scanning microwave profiler. IEEE, Munich, Germany; 2007. 194–197.
  • Albishi A, Ramahi OM. Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator. Sensors (Switzerland). 2014;14:19354–19370.
  • Mukherjee S, Shi X, Udpa L, et al. Design of a split-ring resonator sensor for near-field microwave imaging. IEEE Sens J. 2018;18:7066–7076.
  • Mukherjee S, Tamburrino A, Haq M, et al. Far field microwave NDE of composite structures using time reversal mirror. NDT E Int. 2018;93:7–17.
  • Moll J, Arnold P, Mälzer M, et al. Radar-based structural health monitoring of wind turbine blades: the case of damage detection. Struct Heal Monit. 2018;17:815–822.
  • Viegas C, Alderman B, Huggard PG, et al. Active millimeter-wave radiometry for nondestructive testing/evaluation of composites—glass fiber reinforced polymer. IEEE Trans Microw Theory Tech. 2017;65:641–650.
  • Kharkovsky SN, Hepburn FL, Walker JL, et al. Nondestructive testing of the space shuttle external tank foam insulation using near field and focused millimeter wave techniques. Mater Eval. 2005;63:516–522.
  • Case JT. Microwave and millimeter wave imaging using synthetic aperture focusing and holographical techniques. Rolla, Missouri, USA: University of Missouri-Rolla; 2005.
  • Sheen DM, McMakin DL, Hall TE. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans Microw Theory Tech. 2001;49:1581–1592.
  • Case JT, Kharkovsky S, Zoughi R, et al. Millimeter wave holographical inspection of honeycomb composites. AIP Conf Proc. 2008;975(AIP):970–975.
  • Yu B, Bradley RS, Soutis C, et al. A comparison of different approaches for imaging cracks in composites by X-ray microtomography. Philos Trans R Soc A Math Phys Eng Sci. 2016;374:20160037.
  • Wang Y, Burnett TL, Chai Y, et al. X-ray computed tomography study of kink bands in unidirectional composites. Compos Struct. 2017;160:917–924.
  • Büyüköztürk O, Yu T-Y. Far-field radar NDT technique for detecting GFRP debonding from concrete. Constr Build Mater. 2009;23:1678–1689.
  • Meier D, Zech C, Baumann B, et al. Detection of dry fiber fabric in glass fiber reinforced plastics using a focused W-band radar. 2018 11th Ger. Microw. Conf., IEEE, Freiburg, Germany; 2018, p. 387–390.
  • Nezadal M, Schur J, Schmidt L-P Imaging system for non-destructive testing of glass fibre reinforced plastics. 2014 39th Int. Conf. Infrared, Millimeter, Terahertz waves, Singapore: IEEE; 2013, p. 1–5.
  • Nezadal M, Schur J, Schmidt L-P Non-destructive testing of glass fibre reinforced plastics with a full polarimetric imaging system. 2014 39th Int. Conf. Infrared, Millimeter, Terahertz waves, IEEE, Tucson (Arizona); 2014, p. 1–2.
  • Sheen D, McMakin D, Hall T. Near-field three-dimensional radar imaging techniques and applications. Appl Opt. 2010;49:E83–93.
  • Sheen DM, Hall TE, McMakin DL, et al. Three-dimensional radar imaging techniques and systems for near-field applications. In: Ranney KI, Doerry A, editors. International society for optics and photonics. Vol. 9829. 2016. pp. 98290V. New York, USA: Curran Associates, Inc.
  • Zhang H, Yang R, He Y, et al. A review of microwave thermography nondestructive testing and evaluation. Sensors (Switzerland). 2017;17:1123.
  • Salski B, Olszewska-Placha M, Karpisz T, et al. Microwave applicator for thermal treatment of bituminous surfaces. IEEE Trans Microw Theory Tech. 2017;65:3419–3427.
  • Swiderski W, Szabra D, Wojcik J Nondestructive evaluation of aircraft components by thermography using different heat sources. Proc. 2002 Int. Conf. Quant. InfraRed Thermogr, QIRT Council, Dubrovnik (Croatia); 2002, p. 79–84.
  • Thostenson ET, Chou TW. Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf. 1999;30:1055–1071.
  • Ahlbom A, Bergqvist U, Bernhardt JH, et al. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74:494–522.
  • Cheng L, Tian GY, Szymanik B Feasibility studies on microwave heating for nondestructive evaluation of glass fibre reinforced plastic composites. 2011 IEEE Int. Instrum. Meas. Technol. Conf, IEEE, Binjiang (China); 2011, p. 1–6. doi: 10.1109/IMTC.2011.5944214
  • Galietti U, Palumbo D, Calia G, et al. Non destructive evaluation of composite materials with thermal methods. 15th Eur. Conf. Compos. Mater, (ECCM 15), Venice (Italy): 2012, p. 1–9.
  • Palumbo D, Ancona F, Galietti U. Quantitative damage evaluation of composite materials with microwave thermographic technique: feasibility and new data analysis. Meccanica. 2015;50:443–459.
  • Chady T. Wind turbine blades inspection techniques. Przegląd Elektrotechniczny. 2016;1:3–6.
  • Bakhtiari S, Ganchev SI, Zoughi R. Open-ended rectangular waveguide for nondestructive thickness measurement and variation detection of lossy dielectric slabs backed by a conducting plate. IEEE Trans Instrum Meas. 1993;42:19–24.
  • Sayar M, Seo D, Ogawa K. Non-destructive microwave detection of layer thickness in degraded thermal barrier coatings using K- and W-band frequency range. NDT E Int. 2009;42:398–403.
  • Zoughi R, Gallion JR, Ghasr MT. accurate microwave measurement of coating thickness on carbon composite substrates. IEEE Trans Instrum Meas. 2016;65:951–953.
  • Ghasr MT, Horst MJ, Lechuga M, et al. accurate one-sided microwave thickness evaluation of lined-fiberglass composites. IEEE Trans Instrum Meas. 2015;64:2802–2812.
  • Takeuchi JS, Perque M, Anderson P, et al. Microwave paint thickness sensor. US patent. 2011;7898265.
  • Boybay MS, Ramahi OM. Non-destructive thickness measurement using quasi-static resonators. IEEE Microw Wirel Compon Lett. 2013;23:217–219.
  • Bahr AJ. Microwave nondestructive testing methods. 1st ed. New York, NY: Gordon and Breach Science Publishers; 1982.
  • Govind G, Tiwari NK, Agrawal KK, et al. Microwave subsurface imaging of composite structures using complementary split ring resonators. IEEE Sens J. 2018;18:7442–7449.
  • Ghasr MT, Abou-Khousa MA, Kharkovsky S, et al. Portable real-time microwave camera at 24 GHz. IEEE Trans Antennas Propag. 2012;60:1114–1125.
  • Zhong CH, Croxford AJ, Wilcox PD. Remote inspection system for impact damage in large composite structure. Proc R Soc A Math Phys Eng Sci. 2014;471:20140631
  • Arcadius Tokognon C, Gao B, Tian GY, et al. structural health monitoring framework based on internet of things: a survey. IEEE Internet Things J. 2017;4:619–635.
  • Carrigan TD, Forrest BE, Andem HN, et al. nondestructive testing of nonmetallic pipelines using microwave reflectometry on an in-line inspection robot. IEEE Trans Instrum Meas. 2019;68:586–594.
  • Heuer H, Schulze M, Pooch M, et al. Review on quality assurance along the CFRP value chain – non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques. Compos Part B Eng. 2015;77:494–501.
  • Waller JM, Parker BH, Hodges KL, et al. nondestructive evaluation of additive manufacturing state-of-the-discipline report. Hampton, Virginia, USA: National Aeronautics and Space Administration (NASA) Langley Research Center; 2014.
  • Dickson AN, Barry JN, McDonnell KA, et al. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Addit Manuf. 2017;16:146–152.
  • Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct. 2017;182:36–53.
  • Hajisaeid E, Dericioglu AF, All AA. 3-d printed free-space setup for microwave dielectric characterization of materials. IEEE Trans Instrum Meas. 2018;67:1877–1886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.