250
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Peak scatter-based buried object identification using GPR-EMI dual sensor system

& ORCID Icon
Pages 339-353 | Received 27 Sep 2018, Accepted 10 May 2019, Published online: 31 May 2019

References

  • Doheny RC, Burke S, Cresci R, et al. Handheld standoff mine detection system (HSTAMIDS) field evaluation in Thailand. In: Proceedings of SPIE detection and remediation technologies for mines and minelike targets X. Orlando, FL, USA; 2005.
  • Sato M, Fujiwara J, Feng X, et al. Development of a hand-held GPR MD sensor system (ALIS). In: Proceedings of SPIE – detection and Remediation Technologies for Mines and Minelike Targets X. Orlando, FL, USA; 2005.
  • Daniels DJ, Curtis P, Amin R, et al. MINEHOUND production development. In: Proceedings of SPIE – detection and remediation technologies for mines and minelike targets X. Orlando, FL, USA; 2005.
  • Sezgin M. Development of dual sensor hand-held detector. In: Proceedings of SPIE – detection and sensing of mines, explosive objects, and ob-scured targets XV. Orlando, FL, USA; 2010.
  • Sezgin M, Bahadırlar Y, Turk AS, et al. Portable mine detection system, EP 1972964 (A1), 2008, patent application.
  • Sezgin M, Bahadırlar Y, Turk AS, et al., Portable mine detection system. TR 2007/01896, 2007, patent application.
  • Sezgin M, Ozkan E, Dag M, et al. Graphical user interface for vertical, synchronous dual-sensor mine detection system, PCT/IB2010/054441, 2010, patent application.
  • Nelson CV. Metal detection and classification technologies. Johns Hopkins APL Tech Dig. 2004;25(1):62–67.
  • Tantum SL, Collins LM. A comparison of algorithms for subsurface target detection and identification using time-domain electro-magnetic induction data. IEEE Trans Geosci Remote Sens. 2001;39(6):1299–1306.
  • Sezgin M, Kaplan G, Birim M, et al. Buried metallic object identification by EMI sensor. In: Proceedings of SPIE – detection and remediation technologies for mines and minelike targets XII. Orlando, FL, USA; 2007.
  • Norton SJ, Won IJ. Identification of buried unexploded ordnance from broadband electromagnetic induction data. IEEE Trans Geosci Remote Sens. 2001;39(10):2253–2261.
  • Keiswetter DA, Won IJ, Miller J, et al. Discriminating capabilities of multifrequency EMI data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA, 2000.
  • Daniels DJ, Curtis P, Lockwood O. Classification of landmines using GPR. In: Proceedings of IEEE Radar Conference, Rome, Italy, 2008.
  • Dumanian AJ, Rappaport CM. Enhanced detection and classi-fication of buried mines with an UWB multistatic GPR. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Washington DC, USA, 2005.
  • Nishimoto M, Kimura Y, Tanaka T, et al. UWB-GPR data processing for identification of anti-personnel landmines under rough ground surface. In: Proceedings of IEEE International Conference Ultra-Wideband, Singapore, 2007.
  • Frigui H, Gader P. Detection and discrimination of land mines in ground-penetrating radar based on edge histogram descriptors and a possibilistic k-nearest neighbor classifier. IEEE Trans Fuzzy Syst. 2009;17(1):185–199.
  • Ho KC, Carin L, Gader PD, et al. An investigation of using the spectral characteristics from ground penetrating radar for landmine/clutter discrimination. IEEE Trans Geosci Remote Sens. 2008;46(4):1177–1192.
  • Ho KC, Gader PD, Wilson JN, et al. On the use of energy density spectra for discriminating between landmines and clutter objects. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Washington DC, USA, 2005.
  • Jin-Feng H, Zheng-Ou Z. A new GPR targets feature extraction method based on kernel method. In: Proceedings of 7th International Conference Signal Processing, Beijing, China, 2004.
  • Lopera O, Milisavljevie N, Daniels D, et al. Time-frequency domain signature analysis of GPR data for landmine identification. In: Proceedings of 4th International Workshop on Advanced Ground Penetrating Radar, Naples, Italy, 2007.
  • Kempen LV, Sahli H, Nyssen E, et al. Signal processing and pattern recognition methods for radar AP mine detection and identification. In: Proceedings of IEEE 2nd International Conference Detection Abandoned Land Mines, Edinburgh, UK, 1998.
  • Savelyev TG, Kempen LV, Sahli H, et al. Inves-tigation of time-frequency features for GPR landmine discrimination. IEEE Trans Geosci Remote Sens. 2007;45(1):118–129.
  • Sun Y, Li J, Plastic landmine detection using time-frequency analysis for forward-looking ground penetrating radar. In: Proceedings of SPIE – Detection and Remediation Technologies for Mines and Minelike Targets VIII, Orlando, FL, USA, 2003.
  • Roth F, Genderen PV, Verhaegen M. Convolutional models for buried target characterization with ground penetrating radar. IEEE Trans Antennas Propag. 2005;53(11):3799–3810.
  • Sezgin M. Two dimensional template matching method for buried ob-ject discrimination in GPR data. In: Proceedings of SPIE – detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIV, Orlando, USA; 2009.
  • Yoldemir AB, Sezgin M. Rotation and scale invariant template matching applied to buried object discrimination in GPR data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, USA, 2010.
  • Bhuiyan A, Nath B. Anti-personnel mine detection and classifi-cation using GPR image. In: 18th International Conference Pattern Recognition, Hong Kong, China, 2006.
  • Fowler J, Du Q. Anomaly detection and reconstruction from random projections. IEEE Trans Image Process. 2012;21(1):184–195.
  • Du B, Zhang L. Random-selection-based anomaly detector for hyperspectral imagery. IEEE Trans Geosci Remote Sens. 2011;49(5):1578–1589.
  • Temlioğlu E, Dağ M, Gürcan R. Comparison of feature extraction methods for landmine detection using ground penetrating radar. 24th Signal Processing and Communication Application Conference, Zonguldak, Turkey, 2016.
  • Kaplan GB, İçoğlu O, Yoldemir AB, et al. Real time object detection using dynamic principal component analysis. In: Procedings of XIII International Conference Ground Penetrating Radar, Lecce, Italy; 2010.
  • Yoldemir AB, Sezgin M. Real-time buried object detection using LMMSE estimation. In: Proc. 7th European Radar Conf., Paris, France, 2010.
  • Yoldemir AB, Sezgin M. A least squares approach to buried object detection using ground penetrating radar. IEEE Sensors J. 2011;11(6):1337–1341.
  • Sezgin M. Simultaneous buried object detection and imaging utilizing fuzzy weighted background calculation and target energy moments on ground penetrating radar data. EURASIP J Adv Signal Process. 2011;2011(1):55.
  • Jolliffe IT. Principal component analysis. Springer; 1986.
  • Nazlı H, Bıçak E, Sezgin M. Experimental investigation of different soil types for buried object imaging using impulse GPR. In: Proceedings of XIII International Conference Ground Penetrating Radar, Lecce, Italy, 2010.
  • Sezgin M. Development of dual sensor hand-held detector. In: Proceeding of SPIE Defense and Security Symposium Orlando, USA, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.