241
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Corrosion evaluation of carbon steel bars by magnetic non-destructive method

ORCID Icon, , &
Pages 315-331 | Received 13 Oct 2020, Accepted 10 Dec 2021, Published online: 05 Jan 2022

References

  • Böhni H. Corrosion in reinforced concrete structures. 1st ed. Cambridge (UK): WP; 2005.
  • Liang C, Cai Z, Wu H, et al. Chloride transport and induced steel corrosion in recycled aggregate concrete: a review. Constr Build Mater. 2021;282:122547.
  • Figueira RB. Electrochemical sensors for monitoring the corrosion conditions of reinforced concrete structures: a review. Appl Sci. 2017;7(11):1157.
  • Song H-W, Saraswathy V. Corrosion monitoring of reinforced concrete structures - A review. Int J Electrochem Sci. 2007;2:1–28.
  • He Y, Tian G, Zhang H, et al. Steel corrosion characterization using pulsed eddy current systems. IEEE Sens J. 2012;12(6):2113–2120.
  • Verma SK, Bhadauria SS, Akhtar S. Review of nondestructive testing methods for condition monitoring of concrete structures. J Constr Eng. 2013;2013:1–11.
  • Li W, Xu C, Ho SCM, et al. Monitoring concrete deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements. Sensors (Switzerland). 2017;17:1–12.
  • Murta RHF, Vieira F, Santos VO, et al. Welding defect classification from simulated ultrasonic signals. J Nondestruct Eval. 2018;37(3):37–40.
  • Ciolko AT, Tabatabai H. Nondestructive methods for condition evaluation of prestressing steel strands in concrete bridges - phase I - technology review. Final Report CTL Project 210408. Skokie, Illinois: 1999.
  • Akhlaghi IA, Kahrobaee S, Sekhavat M, et al. Application of artificial neural network and multi-magnetic NDE methods to determine mechanical properties of plain carbon steels subjected to tempering treatment. IJE Transactions A: Basics. 2021;34:919–927.
  • Nezhad KK, Kahrobaee S, Akhlaghi IA. Application of magnetic hysteresis loop method to determine prior austenite grain size in plain carbon steels. J Magn Magn Mater. 2019;477:275–282.
  • Kahrobaee S, Hejazi T, Ahadi I. Electromagnetic methods to improve the nondestructive characterization of induction hardened steels : a statistical modeling approach. Surf Coat Technol. 2019;380:125074.
  • Kahrobaee S, Hejazi TH. A RSM-based predictive model to characterize heat treating parameters of D2 steel using combined Barkhausen noise and hysteresis loop methods. J Magn Magn Mater. 2017;433:131–140.
  • Fernandes B, Titus M, Nims DK, et al. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge. Nondestruct Test Eval. 2013;28(2):99–118.
  • Rens KL, Wipf TJ, Klaiber FW. Review of nondestructive evaluation techniques of civil infrastructure. J Perform Constr Facil. 1997;11(4):152–160.
  • Scheel H, Hillemeier B. Location of prestressing steel fractures in concrete. J Mater Civ Eng. 2003;15:228–234.
  • Scheel H, Hillemeier B. Capacity of the remanent magnetism method to detect fractures of steel in tendons embedded in prestressed concrete. NDT E Int. 1997;30(4):211–216.
  • Fernandes B, Nims D, Devabhaktuni V. Comprehensive MMF-MFL inspection for corrosion detection and estimation in embedded prestressing strands. J Civ Struct Heal Monit. 2014;4:43–55.
  • Fernandes B, Nims D, Devabhaktuni V. Computer aided modeling of magnetic behavior of embedded prestressing strand for corrosion estimation. J Nondestruct Eval. 2013;32:124–133.
  • Rumiche F, Indacochea JE, Wang ML. Detection and monitoring of corrosion in structural carbon steels using electromagnetic sensors. J Eng Mater Technol Trans ASME. 2008;130(3):0310081.
  • Fernandes B, Wade JD, Nims DK, et al. A new magnetic sensor concept for nondestructive evaluation of deteriorated prestressing strand. Res Nondestruct Eval. 2012;23(1):46–68.
  • Zhang J, Liu C, Sun M, et al. An innovative corrosion evaluation technique for reinforced concrete structures using magnetic sensors. Constr Build Mater. 2017;135:68–75.
  • Chady T, Frankowski P, Waszczuk P, et al. Evaluation of reinforced concrete structures using the electromagnetic method. In Dale E. Chimenti, and Bond, Leonard J., editors. 44th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Conference Proceedings; 1949, 37; Provo, Utah, USA; 2018. DOI:https://doi.org/10.1063/1.5031538
  • Jiles DC, Atherton DL. Theory of ferromagnetic hysteresis. J Magn Magn Mater. 1986;61(1–2):48–60.
  • Fecioru-Morariu M, Paduraru A, Caltun O. The influence of the frequency and waveform on the hysteresis loop of some NiZnCu ferrites. J Optoelectron Adv Mater. 2003;5:985–990.
  • Vieira AP, Moura EP, Gonçalves LL. Fluctuation analyses for pattern classification in nondestructive materials inspection. EURASIP J Adv Sig Pr. 2010;2010:1–12.
  • Moura EP, Normando PG, Gonçalves LL, et al. Characterization of cast iron microstructure through fluctuation and fractal analyses of ultrasonic backscattered signals combined with classification techniques. J Nondestruct Eval. 2012;31(1):90–98.
  • Moura EP, Junior FE, Damasceno FFR, et al. Classification of imbalance levels in a scaled wind turbine through detrended fluctuation analysis of vibration signals. Renew Energy. 2016;96:993–1002.
  • Kahrobaee S, Ghanei S, Kashefi M. Using an artificial neural network for nondestructive evaluation of the heat treating processes for D2 tool steels. J Mater Eng Perform. 2019;28(5):3001–3011.
  • Yekta PV, Honar FJ, Fesharaki MN. Modelling of hysteresis loop and magnetic behaviour of Fe-48Ni alloys using artificial neural network coupled with genetic algorithm. Comput Mater Sci. 2019;159:349–356.
  • Mirzaee A, Kahrobaee S, Ahadi Akhlaghi I. Non-destructive determination of microstructural/mechanical properties and thickness variations in API X65 steel using magnetic hysteresis loop and artificial neural networks. Nondestruct Test Eval. 2020;35:190–206.
  • Akhlaghi IA, Kahrobaee S, Nezhad KK. An accurate non-destructive method for determining mechanical properties of plain carbon steel parts using MHL and GRNN. Nondestruct Test Eval. 2020. DOI:https://doi.org/10.1080/10589759.2020.1740703
  • Antonio SQ, Fulginei FR, Laudani A, et al. An effective neural network approach to reproduce magnetic hysteresis in electrical steel under arbitrary excitation waveforms. J Magn Magn Mater. 2021;528:167735.
  • Webb AR. Statistical pattern recognition. 2nd ed. West Sussex (UK): Wiley; 2002.
  • Haykin S. Neural networks and learning machines. 3rd ed. Upper Saddle River (NJ): Pearson; 2009.
  • ASTM A575. Standard specification for steel bars, carbon, merchant quality, m-grades. West Conshohocken, USA: Standard No. A575:2020, 2020. DOI:https://doi.org/10.1520/A0575-20.
  • ISO 15630-1. Steel for the reinforcement and prestressing of concrete - test methods - Part 1: reinforcing bars, rods and wire. Brussels, UK: Standard No. EN ISO 15630-1, 2019.
  • ASTM B117. Standard practice for operating salt spray apparatus. West Conshohocken, USA: Standard No. B117:2011, 2011. DOI:https://doi.org/10.1520/B0117-11.
  • ASTM G1. Standard practice for preparing, cleaning, and evaluating corrosion test specimens. West Conshohocken, USA: Standard No. G1:2017, 2017.
  • Szynowski J, Kolano R, Kolano-Burian A, et al. Dynamic magnetic properties of the Fe-based alloys under non-sinusoidal excitation. J Magn Magn Mater. 2008;320. DOI:https://doi.org/10.1016/j.jmmm.2008.04.057
  • de La Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel. Corros Sci. 2011;53(2):604–617.
  • Gotoh Y, Hirano H, Nakano M, et al. Electromagnetic non-destructive testing of rust region in stell. INTERMAG ASIA 2005. Dig IEEE Int Magn Conf. Nagoya, Japan; 2005. DOI:https://doi.org/10.1109/intmag.2005.1463640.
  • Andrade C, Alonso C. Corrosion rate monitoring in the laboratory and on-site. Constr Build Mater. 1996;10(5):315–328.
  • Da Silva FE, Freitas FNC, Abreu HFG, et al. Characterization of the evolution of recrystallization by fluctuation and fractal analyses of the magnetic hysteresis loop in a cold rolled non-oriented electric steel. J Mater Sci. 2011;46:3282–3290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.