311
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of welding defects on the damage evolution of Q245R steel using acoustic emission and infrared thermography

, , , , &
Pages 189-210 | Received 16 May 2021, Accepted 21 Jun 2022, Published online: 04 Jul 2022

References

  • Witos F. Properties of amplitude distributions of acoustic emission signals generated in pressure vessel during testing. Arch Acoust. 2019;44(3):493–503.
  • Lahiri B, Haneef T, Bagavathiappan S, et al. Infrared thermography-based studies on hydrotesting of stainless steel pressure vessels. Insight. 2015;57(7):406–413. DOI:10.1784/insi.2015.57.7.406
  • Kanes R, Basha A, Vechot LN, et al. Simulation of venting and leaks from pressure vessels. J Loss Prevent Process Indust. 2016;40:563–577.
  • Vukelic G, Vizentin G, Bakhtiari R, et al. Failure analysis of a steel pressure vessel with a composite wrap repair proposal. Int J Pres Ves Pip. 2021;193:104476. DOI:10.1016/j.ijpvp.2021.104476
  • Jiang WC, Luo Y, Zeng Q, et al. Residual stresses evolution during strip clad welding, post welding heat treatment and repair welding for a large pressure vessel. Int J Pres Ves Pip. 2021;189:104259.
  • Ranganayakulu SV, Shiva RJ, Kuchedludu A, et al. Acoustic emission studies on weld bead defects in nuclear grade SS 316L materials. Open J Acoust. 2014;4(03):115–130. DOI:10.4236/oja.2014.43012
  • Wuriti GS, Chattopadhyaya S, Krolczyk G, et al. Comparison of acoustic emission data acquired during tensile deformation of maraging steel M250 welded specimens. Arch Acoust. 2020;45(2):221–231.
  • Kuppusamy A, Rameshkumar K, Sumesh A, et al. Gas metal arc welding process parameter optimization to reduce porosity defect in a longitudinal seam welding of pressure vessels. SAE Int J Mater Manuf. 2020;13(1):61–79.
  • Astarita A, Coppola M, Esposito S, et al. Experimental characterization of Ti6Al4V T joints welded through linear friction welding technique: microstructure and NDE. Adv Manuf. 2016;4(4):305–313. DOI:10.1007/s40436-016-0160-7
  • Huang W, Kovacevic R. A laser-based vision system for weld quality inspection. Sensors. 2011;11(1):506–521.
  • Miao R, Gao YT, Ge L, et al. Online defect recognition of narrow overlap weld based on two-stage recognition model combining continuous wavelet transform and convolutional neural network. Comput Ind. 2019;112:103115.
  • Gao XD, Lan CZ, You DY, et al. Weldment nondestructive testing using magneto-optical imaging induced by alternating magnetic field. J Nondestr Eval. 2017;36(3):55. DOI:10.1007/s10921-017-0434-4
  • Zahran O, Kasban H, El-Kordy M, et al. Automatic weld defect identification from radiographic images. NDT E Int. 2013;57:26–35.
  • Park JK, An WH, Kang DJ. Convolutional neural network based surface inspection system for non-patterned welding defects. Int J Precis Eng Manuf. 2019;20(3):363–374.
  • Gholizadeh S, Leman Z, Baharudin B, et al. A review of the application of acoustic emission technique in engineering. Struct Eng Mech. 2015;54(6):1075–1095. DOI:10.12989/sem.2015.54.6.1075
  • Droubi MG, Faisal NH, Orr F, et al. Acoustic emission method for defect detection and identification in carbon steel welded joints. Journal of Constructional Steel Research. 2017;134:28–37.
  • Gyun NE, Hoon K, and Ono K. Study on evaluation of AE signals at weld region of SA 516 steel. 1st International Conference on Advanced Nondestructive Evaluation, NOV 07-09, 2005, Cheju Isl, SOUTH KOREA. 2006;1729–1732. D OI:10. 4028/www.scientific.net/KEM.321-323.1729
  • Boronski D, Dzioba I, Kotyk M, et al. Investigation of the fracture process of explosively welded AA2519-AA1050-Ti6Al4V layered material. Materials. 2020;13(10):2226. DOI:10.3390/ma13102226
  • Chai MY, Duan Q, Hou XL, et al. Fracture toughness evaluation of 316LN stainless steel and weld using acoustic emission technique. ISIL Int. 2016;56(5):875–882. DOI:10.2355/isijinternational.ISIJINT-2015-599
  • Jaiswal PR, Kumar RI, Saeedifar M, et al. Deformation and damage evolution of a full-scale adhesive joint between a steel bracket and a sandwich panel for naval application. Proc Inst Mech Eng C J Mech Eng Sci. 2020;954406220947122.
  • Matovu MJ, Farhidzadeh A, Salamone S. Damage assessment of steel-plate concrete composite walls by using infrared thermography: a preliminary study. J Civ Struct Health Monit. 2016;6(2):303–313.
  • Thomas KP, Unnikrishnakurup S, Nithin PV, et al. Online monitoring of cold metal transfer (CMT) process using infrared thermography. Quant Infrared Thermogr J. 2017;14(1):68–78. DOI:10.1080/17686733.2016.1229330
  • Broberg P. Surface crack detection in welds using thermography. NDT E Int. 2013;57:69–73.
  • Park H, Choi M, Park J, et al. A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography. Infrared Phys Technol. 2014;62:124–131.
  • Forejtova L, Zavadil T, Kolarik L, et al. Non-Destructive inspection by infrared thermography of resistance spot welds used in automotive industry. Acta Polytech. 2019;5(3):238–247. DOI:10.14311/AP.2019.59.0238
  • Rodriguez-Martin M, Lagueela S, Gonzalez-Aguilera D, et al. Cooling analysis of welded materials for crack detection using infrared thermography. Infrared Phys Technol. 2014;67:547–554.
  • Ennaceur C, Laksimi A, Herve C, et al. Monitoring crack growth in pressure vessel steels by the acoustic emission technique and the method of potential difference. Int J Pres Ves Pip. 2006;83(3):197–204. DOI:10.1016/j.ijpvp.2005.12.004
  • Zhou W, Yin HF, Shang YJ, et al. Failure behavior and damage visualization of thick carbon/aramid hybrid woven composites under flexural loading conditions. Case Stud NondestrTest Eval. 2020;35(2):139–157. DOI:10.1080/10589759.2019.1662902
  • Casiez N, Deschanel S, Monnier T, et al. Acoustic emission from the initiation of plastic deformation of Polyethylenes during tensile tests. Polymer. 2014;55(25):6561–6568. DOI:10.1016/j.polymer.2014.09.044
  • Zhang Y, Li Y, Lai HS, et al. Acoustic emission response and damage process for q235 steel in an in situ tensile test. Arch Acoust. 2019;44(4):807–813.
  • Kotoul M, Bilek Z. Acoustic emission during deformation and crack loading in structural steels. Int J Press Vessels Pip. 1990;44(3):291–307.
  • Krampikowska A, Pala R, Dzioba I, et al. The use of the acoustic emission method to identify crack growth in 40crmo steel. Materials. 2019;12(13):2140. DOI:10.3390/ma12132140
  • Adamczak-Bugno A, Krampikowska A. The acoustic emission method implementation proposition to confirm the presence and assessment of reinforcement quality and strength of fiber-cement composites. Materials. 2020;13(13):2966.
  • Swit G, Krampikowska A, Pała T, et al. Using AE signals to investigate the fracture process in an AL-TIi laminate. Materials. 2020;13(13):2909. DOI:10.3390/ma13132909
  • Aboali A, El-Shaib M, Sharara A, et al. Screening for welding defects using acoustic emission technique. Adv Mater Res. 2014;1025-1026:7–12. D OI:10.4 028/www.scientific.net/AMR.1025-1026.7
  • Chen GW, Luo HY, Yang HY, et al. Effects of the welding inclusion and notch on the fracture behaviors of low-alloy steel. J Mater Res Technol-JmR&T. 2019;8(1):447–456. DOI:10.1016/j.jmrt.2018.04.005
  • Mathis K, Prchal D, Novotny R, et al. Acoustic emission monitoring of slow strain rate tensile tests of 304L stainless steel in supercritical water environment. Corros Sci. 2011;53(1):59–63.
  • Yu JG, Ziehl P, Matta F. Acoustic emission detection of fatigue damage in cruciform welded joints. Journal of Constructional Steel Research. 2013;86:85–91.
  • Prakash M, Kanthababu M, Rajurkar KP. Investigations on the effects of tool wear on chip formation mechanism and chip morphology using acoustic emission signal in the microendmilling of aluminum alloy. Int J Adv Manuf Technol. 2015;77(5–8):1499–1511.
  • Griffin JM, Diaz F, Geerling E, et al. Control of deviations and prediction of surface roughness from micro machining of THz waveguides using acoustic emission signals. Mech Syst Signal Process. 2017;85:1020–1034.
  • Usamentiaga R, Venegas P, Guerediaga J, et al. Infrared thermography for temperature measurement and non-destructive testing. Sensors. 2014;14(7):12305–12348. DOI:10.3390/s140712305
  • Fenollera M, Luis MJ, Goicoechea I, et al. Experimental study on thermal conductivity of self-compacting concrete with recycled aggregate. Materials. 2015;8(7):4457–4478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.