49
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Acoustic emission source location method for glass fibre reinforced plastics based on virtual loading focusing enhancement technology

, , ORCID Icon, &
Pages 1250-1265 | Received 01 May 2023, Accepted 20 Aug 2023, Published online: 29 Aug 2023

References

  • Chunguang WANG, Shiquan GE, Mingyu SUN. Comparative study of vortex-induced vibration of FRP composite risers with large length to diameter ratio under different environmental situations. Appl Sci. 2019;9(3):517. doi: 10.3390/app9030517
  • BEDON C, LOUTER C. Numerical investigation on structural glass beams with GFRP-embedded rods, including effects of pre-stress. Compos Struct. 2018;184:650–661. doi: 10.1016/j.compstruct.2017.10.027
  • Dongdong C, Quantian L, Maozhou M. Low velocity impact behavior of interlayer hybrid composite laminates with carbon/glass/basalt fibres. Comp Part B-Eng. 2019;176:107191. doi: 10.1016/j.compositesb.2019.107191
  • Ibrahim ME, Smith RA, Wang CH. Ultrasonic detection and sizing of compressed cracks in glass- and carbon-fibre reinforced plastic composites. NDT & E International. 2017;92:111–121. doi: 10.1016/j.ndteint.2017.08.004
  • Masayuki S, Masayuki K, Takuya M. Numerical computation technique to examine glass fiber mat and cloth reinforcement of glass-fiber-reinforced plastic. J Fiber Sci Technol. 2018;74(5):109–117. doi: 10.2115/fiberst.2018-0017
  • Dashan M, Renxi L, Tao W. Hierarchic structure and mechanical property of glass fiber reinforced isotactic polypropylene composites molded by multiflow vibration injection molding. Polym Compos. 2017;38(12):2707–2717. doi: 10.1002/pc.23868
  • Shenoy Heckadka S, Pai Ballambat R, Kini Manjeshwar V, et al. Damage characterization of ultra high molecular weight polyethylene/flax/jute fiber reinforced melamine formaldehyde hybrid composites using cone beam computed tomography. Case Stud NondestrTest Eval. 2022;37(4):400–426. doi: 10.1080/10589759.2021.2023872
  • Sunting TSAI, Limin WANG, Panpan HUANG. Acoustic emission from breaking a Bamboo Chopstick. Phys Rev Lett. 2016;116(3):035501. doi: 10.1103/PhysRevLett.116.035501
  • Xiaojiang LONG, Qiufeng LI, Caihou HE, et al. Acoustic emission monitoring and evaluation of steel damage under the condition of different tensile velocity. J Vibr Shock. 2017;36(7):219–225.
  • Chao LU, Peng DING, Zhenhua CHEN. Damage behavior of carbon-cloth/Epoxy resin composite in tensile test based on acoustic emission. Fail Anal Prev. 2012;7(1):15–18.
  • Samira G, Leman Z, Baharudin BT, et al. Acoustic emission analysis for characterisation of damage mechanisms in glass fiber reinforced polyester composite. Aust J Mech Eng. 2016;16(1):1–10. doi: 10.1080/14484846.2016.1264284
  • Bohmann T, Schlamp M, Ehrlich I. Acoustic emission of material damages in glass fibre-reinforced plastics. Composites Part B-Engineering. 2018;155:444–451. Composites. doi: 10.1016/j.compositesb.2018.09.018
  • Balan R, Arumugam V, Rauf K. AbdulEstimation of residual flexural strength of unidirectional glass fiber reinforced plastic composite laminates under repeated impact load. J Compos Mater. 2015;49(6):713–722. doi: 10.1177/0021998314525484
  • Suresh Kumar C, Kumar KS, Arumugam V. Characterization of failure mechanism in glass, carbon and their hybrid composite laminates in epoxy resin by acoustic emission monitoring. Case Stud NondestrTest Eval. 2019;34(3):254–266. doi: 10.1080/10589759.2019.1590829
  • Suresh KC, Arumugam V, Sengottuvelusamy R. Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network. Appl Acoust. 2017;115:32–41. doi: 10.1016/j.apacoust.2016.08.013
  • Xin LI, Zhengliang KANG, Kaihui XU. Characteristics research for acoustic emission testing signal of different damage of GFRP. J Nanchang Hangkong Uni: Nat Sci. 2016;30(4):75–79.
  • Rongyao YE, Qiang WANG, Xinwei FAN. Acoustic emission source location of composite materials using one channel sensor based on time reversal method. J Wuhan Uni Technol. 2014;36:12, 22–26.
  • Park WH, Packo P, Kundu T. Acoustic source localization in an anisotropic plate without knowing its material properties: a new approach. Ultrasonics. 2017;79:9–17. doi: 10.1016/j.ultras.2017.02.021
  • Sen N, Kundu T. A new wave front shape-based approach for acoustic source localization in an anisotropic plate without knowing its material properties. Ultrasonics. 2018;87:20–32. doi: 10.1016/j.ultras.2018.01.011
  • Sen N, Kundu T. Acoustic source localization in a highly anisotropic plate with unknown orientation of its axes of symmetry and material properties with numerical verification. Ultrasonics. 2020;100:105977. doi: 10.1016/j.ultras.2019.105977
  • Lim DG, Lee WG, Kim J, et al. A point Crack source location method without velocity Information in anisotropic plates. APPL SCI BASEL. 2022;12(21):11081. doi: 10.3390/app122111081
  • Fink MATHIAS. Time-reversal of ultrasonic field–part I: basic principles. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):555–566. doi: 10.1109/58.156174
  • WU F, L TJ, Fink MATHIAS. Time reversal of Ultrasonic fields-Part II: Experimental results. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39(5):567–578. doi: 10.1109/58.156175
  • Qiufeng LI, Jianjuan CHEN, Caihou HE, et al. Location algorithm for source of acoustic emission based on time reversal. Chinese J Sens Actuators. 2015;28:11, 1659–1663.
  • Chenghao WANG, Wei WEI. Distinguishing between target and interface in ultrasonic detection by a modified time reversal method. ACTA Acoust. 2002;27(3):193–197.
  • Wei X, Chen Y, Lu C, et al. Acoustic emission source localization method for high-speed train bogie. Multimed Tools Appl. 2020;79(10):14933–14949. doi: 10.1007/s11042-019-08580-3
  • Xin LI, Gengsheng LUO, Shengrong LONG, et al. Location method of acoustic emission by time reversal focusing and Enhancing for Steel plate. Chin J Sci Instrum. 2016;37(8):1792–1799.
  • Wang Q, Yuan S. No Baseline time reversal imaging method for active lamb wave structural damage monitoring. Acta Aeronauticaet Astronautica Sinica. 2010;31(1):178–183.
  • Jian CAI, Lihua SHI, Shengfang YUAN. High-resolution damage imaging for composite plate structures based on virtual time reversal. Acta Materiae Compositae Sinica. 2012;29(1):183–189.
  • Hao FU, Bin WU, Cunfu HE. Ultrasonic guided wave pipe inspection based on synthetic time-reverse method. J Mech Eng. 2013;49(12):17–23. doi: 10.3901/JME.2013.12.017
  • Qiang WANG, Shengfang YUAN, Lei QIU. Image representation based on time reversal theory for structure health monitoring. Chin J Sci Instrum. 2008;29(9):1816–1821.
  • Aljets DIRK, Chong ALEX, Wilcox STEVE. Acoustic emission source location on large plate-like structures using a local triangular sensor array. Mech Syst Signal Process. 2012;30:91–102. doi: 10.1016/j.ymssp.2012.01.012
  • Wang G, Chen Y, Li Q, et al. Ultrasonic computerized tomography imaging method with combinatorial optimization algorithm for concrete pile foundation. IEEE Access. 2019;7:132395–132405. doi: 10.1109/ACCESS.2019.2940766
  • Elsayed ELBADRY, Abdalla GA, Mohamed MOHAMMED. Effect of glass fibers stacking sequence on the mechanical properties of glass fiber/polyester composites. Journal Of Material Science & Engineering. 2018;7(1):1000416. doi: 10.4172/2169-0022.1000416

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.