135
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Research progress on temperature field leakage detection of earth-rock dams and new exploration in leakage point detection

ORCID Icon, , , , &
Pages 1009-1029 | Received 18 Jun 2023, Accepted 23 Oct 2023, Published online: 27 Dec 2023

References

  • Xu LQ, Zhang GC, Ma ZK. Development of comprehensive geophysical prospecting technology for hidden danger detection of earth rock dams. Prog Geophys. 2022;37(4):1769–1779. doi: 10.6038/pg2022FF0444
  • Li YL, Wang T, Wen LF, et al. Study on seismic failure probability of high earth-rock dam considering dam body deformation and slope stability. Eur J Environ Civ Eng. 2021;26(9):3981–3995. doi: 10.1080/19648189.2020.1828176
  • Ministry of Water Resources of the People’s Republic of China. National water conservancy development statistical bulletin. [EB/OL]. 2020. [2022-02-09].
  • Fu CJ, Li GY, Chen L, et al. A mathematical model for calculating penetration velocity using temperature field. Hydro-Sci Eng. 2015;6:88–93. doi: 10.16198j.cnki.1009-640X.2015.06.013
  • Wu AQ, Zhou HM, Wu QH. Levees in Europe and United States: characteristics and comparison with China. J Changjiang River Sci Res Inst. 2019;36(10):11–18. doi: CNKI:SUN:CJKB.0.2019-10-005
  • Zhou HM, Xia GQ, Zhou LM, et al. Comprehensive geophysical detection technologies for hidden dangers of embankment and application. J Changjiang River Sci Res Inst. 2019;36(10):135–140. doi: CNKI:SUN:CJKB.0.2019-10-032
  • Li HE, Ma GZ, Wang F, et al. Analysis of dam failure trend of China from 2000 to 2018 and improvement suggestions. Hydro-Sci Eng. 2021;2021(5):101–111.
  • Zhang JQ, Xu L, Li P, et al. Experimental study on comprehensive geophysical prospecting technology in dam leakage detection. Prog Geophys. 2018;33(1):432–440. doi: 10.6038/pg2018BB0087
  • Poikajärvi J, Peisa K, Herronen T, et al. GPR in road investigations – equipment tests and quality assurance of new asphalt pavement. Nondestr Test Eval. 27(3): 293–303. doi:10.1080/10589759.2012.695786.
  • Halabe UB, Agrawal S, Bhaskaran G. Nondestructive evaluation of wooden logs using ground penetrating radar. Nondestr Test Eval. 2009;24(4):329–346. doi: 10.1080/10589750802474344
  • Pickering SG, Almond DP. An evaluation of the performance of an uncooled micro bolometer array infrared camera for transient thermography NDE. Nondestr Test Eval. 2007;22(2–3):63–70. doi: 10.1080/10589750701446484
  • Goel A, Das A. Nondestructive testing of asphalt pavements for structural condition evaluation: a state of the art. Nondestr Test Eval. 23(2):121–140. 10.1080/10589750701848697
  • Ptaszek G, Cawley P, Almond D. Artificial disbonds for calibration of transient thermography inspection of thermal barrier coating systems. NDT E Int. 2012;45(1):71–78. doi: 10.1016/j.ndteint.2011.09.008
  • Yan B, Wu CK, Ma HL. Ultrasonic detection of contour node represented voids and cracks. Nondestr Test Eval. 33(3):253–271. doi: 10.1080/10589759.2018.1449841
  • Vallerand S, Maldague X. Defect characterization in pulsed thermography: a statistical method compared with Kohonen and perceptron neural networks. NDT E Int. 2000;33(5):307–315. doi: 10.1016/S0963-8695(99)00056-0
  • Hao YM, Du ZH, Xing ZX, et al. Urban hazardous chemicals pipeline leakage positioning method based on CELMD-MCKD. Nondestr Test Eval. 36(5): 477–493. doi:10.1080/10589759.2020.1803860.
  • Ogilvy AA, Ayed MA, Bogoslovsky VA. Geophysical studies of water leakages form reservoirs*. Geophys Prospect. 2010;17(1):36–62. doi: 10.1111/j.1365-2478.1969.tb02071.x
  • Tan X, Bao Y. Measuring crack width using a distributed fiber optic sensor based on optical frequency domain reflectometry. Meas. 2021;172:172. doi: 10.1016/j.measurement.2020.108945
  • Tan X, Mahjoubi S, Zou X, et al. Metaheuristic inverse analysis on interfacial mechanics of distributed fiber optic sensors undergoing interfacial debonding. Mech Syst Signal Process. 2023;200:110532. doi: 10.1016/j.ymssp.2023.110532
  • Kadioglu S, Ulugergerli EU. Imaging karstic cavities in transparent 3D volume of the GPR data set in Akkopru dam, Mugla, Turkey. Nondestr Test Eval. 2012;27(3):263–271. doi: 10.1080/10589759.2012.694885
  • Fu S, Yan X, Wang Z, et al. Detection of leakage in earth-rock dam using high density resistivity method. Res J Chem Environ. 2013;17:215–222.
  • Su HZ, Zhou RL. Research progress and prospect of earth-rockfill dam leakage detection modes and method. Adv Sci Tech Water. 2022;42(1):1–10+39.
  • Zeng MM, Chen JS, Wang T, et al. Transient temperature field model for dam seepage. Adv Sci Tech Water. 2013;33(4):10–13. doi: 10.3880/j.issn.10067647.2013.04.003
  • Dong HZ Study on heat resource method and tracer theory for leakage of Dam [ Doctoral thesis]. Nanjing: HoHai University; 2004.
  • Li DY, Xiong J, Yu SD, et al. Study on seepage monitoring technology with temperature in embankment dam. J Changjiang River Sci Res Inst. 2005;2005(6):35–39. doi: 10.3969/j.issn.1001-5485.2005.06.010
  • Zhang HQ. Heat conduction. Beijing: Higher Education Press; 1992.
  • Wang XJ, Chen JS. Model for detection of concentrated leakage in dam and dyke and its numerical experiment. Chin J Rock Mech Eng. 2006;2006(S2):3794–3801. doi: 10.3321/j.issn:1000-6915.2006.z2.072
  • Gan XQ, Xiao Q, Ning J. Advances in theory: monitoring seepage of embankment dam by measuring temperature. J Changjiang River Sci Res Inst. 2014;31(7):119–124. doi: 10.3969/j.issn.1001-5485.2014.07.023
  • Kappelmeyer O. The use of near surface temperature measurements for discovering anomalies due to causes at depths. Geophys Prospect. 1957;5(3):239–258. doi: 10.1111/j.1365-2478.1957.tb01431.x
  • Xiao CZ, Pan WC. Preliminary analysis on dam foundation seepage through temperature field. Yangtze River. 1999;5:22–24+53. doi: 10.3969/j.issn.1001-4179.1999.05.009
  • Zhu PY, Jiang GL, Leng YB. Analysis of seepage monitoring for an earth dam model with distributed optical fiber sensors. Strat Stud CAE. 2011;13(3):82–85+96. doi: 10.3969/j.issn.1009-1742.2011.03.013
  • Su HZ, Tian SG, Cui SS, et al. Distributed optical fiber-based theoretical and empirical methods monitoring hydraulic engineering subjected to seepage velocity. Opt Fiber Technol. 2016;31:111–125. doi: 10.1016/j.yofte.2016.05.008
  • Birman JH. Glacial geology across the crest of the Sierra Nevada. California: Geological Society of America; 1964.
  • Sharp RP, Birman JH. Additions to classical sequence of Pleistocene glaciations, Sierra Nevada, California. Geol Soc Am Bull. 1963;74(8):1079–1086. doi: 10.1130/0016-7606(1963)74[1079:ATCSOP]2.0.CO;2
  • Demeshchuk LI, Luchko IA, Rudchenko PA, et al. Investigating the effectiveness of seepage-blocking layers produced by explosion in channels. Inst Mat AN UkrSSR. 1981;81–29.
  • Rudchenko PA, Luchko IA, Yurik II. Calculation of seepage from channels constructed by explosives. Inst Mat AN UkrSSR. 1978;78–14.
  • Wardell RE, Findlay RC, Muzzy MM. Seepage effects on sedimentation of fly ash slurry. Int J Rock Mech Min Sci & Geomech Abstr. 1990;27(2):A83–A83. doi: 10.1016/0148-9062(90)95011-O
  • Togawa T, Nemoto T, Tsubakimoto H Thermal pulse flowmeter: U.S. Patent 4,483,200[P]. 1984 Nov 20.
  • Byrne GF, Drummond JE, Rose CW. A sensor for water flux in soil. “Point source” instrument. Water Resour Res. 1967;3(4):1073–1078. doi: 10.1029/WR003i004p01073
  • Byrne GF, Drummond JE, Rose CW. A sensor for water flux in soil: 2.‘Line source’ instrument. Water Resour Res. 1968;4(3):607–611. doi: 10.1029/WR004i003p00607
  • Hedayati-Dezfooli M, Leong WH. A design of experimental apparatus for studying coupled heat and moisture transfer in soils at high-temperature conditions. Exp Heat Transfer. 2020;33(2):155–178. doi: 10.1080/08916152.2019.1600618
  • Wu ZW, Song HZ. Numerical simulation of embankment dam seepage monitoring with temperature based on thermal-hydro coupling model. Rock Soil Mech. 2015;36(2):584–590. doi: 10.16285/j.rsm.2015.02.039
  • Zhu HH, Shi B, Yan JF, et al. Physical model testing of slope based on distributed fiber optical strain sensing technology. Chin J Geotech Eng. 2013;32(4):821–828. doi: 10.3969/j.issn.1000-6915.2013.04.022
  • Xiao HL, Cai DS, Fan Y. Application of distributed optical fiber temperature sensing technology to leakage monitoring for rock-fill dams with face slabs. Hydro Pump Stor. 2006;2006(6):53–56+60. doi: 10.3969/j.issn.1671-3893.2006.06.016
  • Blume T, Krause S, Meinikmann K, et al. Upscaling lacustrine groundwater discharge rates by fiber‐optic distributed temperature sensing. Water Resour Res. 2013;49(12):7929–7944.
  • Su HZ, Hu J, Yang M. Dam seepage monitoring based on distributed optical fiber temperature system. IEEE Sens J. 2014;15(1):9–13. doi: 10.1109/JSEN.2014.2335197
  • Myles A Permanent leak detection on pipes using a fibre optic based continuous sensor technology. Pipelines Conference. 2011:744–754. doi:10.1061/41187(420)69.
  • He N, Ding Y, Wu YL, et al. Experimental study of distributed optical fiber temperature measurement technology for measuring leakage in embankment dam. Hydro-Sci Eng. 2015;2015(1):20–27. doi: 10.16198/j.cnki.1009-640X.2015.01.003
  • Aufleger M, Conrad M, Goltz M, et al. Innovative dam monitoring tools based on distributed temperature measurement. Jordan J Civ Eng. 2007;1(1):29–37.
  • Kapeller G, Etzer T, Aufleger M. Measurements of hydraulic subsurface processes by means of distributed fiber optic temperature sensing (DTS). Springer Berl Heidelb; 2013. doi:10.1007/978-3-642-31445-2_64.
  • Xiao HL, Zhang JF, He J. Research on measuring method of flow velocity based on distributed optical fiber sensing technology. Rock Soil Mech. 2009;30(11):3543–3547. doi: CNKI:SUN:YTLX.0.2009-11-068
  • Yang J, Wang ZH, Cheng L, et al. Si-DTS-based experimental study on monitoring of sandy soil seepage. Water Resour Hydro Eng. 2019;50(7):168–173. doi: 10.13928/j.cnki.wrahe.2019.07.022
  • Su HZ, Kang YY. Design of system for monitoring seepage of levee engineering based on distributed optical fiber sensing technology. Int J Distrib Sens Netw. 2013;9(12). doi: 10.1155/2013/358784
  • Bagavathiappan S, Lahiri BB, Saravanan T, et al. Infrared thermography for condition monitoring–A review. Infrared Phys Technol. 2013;60:35–55. doi: 10.1016/j.infrared.2013.03.006
  • Doshvarpassand S, Wu C, Wang X. An overview of corrosion defect characterization using active infrared thermography. Infrared Phys Technol. 2019;96:366–389. doi: 10.1016/j.infrared.2018.12.006
  • Zhou W, Du YG, Wang SD, et al. Effects of welding defects on the damage evolution of Q245R steel using acoustic emission and infrared thermography. Nondestr Test Eval. 2023;38(2):1–22.
  • Kylili A, Fokaides PA, Christou P, et al. Infrared Thermography (IRT) applications for building diagnostics: a review. Appl Energy. 2014;134:531–549. doi: 10.1016/j.apenergy.2014.08.005
  • Balaras CA, Argiriou AA. Infrared thermography for building diagnostics. Energy Build. 2002;34(2):171–183. doi: 10.1016/S0378-7788(01)00105-0
  • Jadin MS, Taib S. Recent progress in diagnosing the reliability of electrical equipment by using infrared thermography. Infrared Phys Technol. 2012;55(4):236–245. doi: 10.1016/j.infrared.2012.03.002
  • Huda ASN, Taib S. Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment. Appl Therm Eng. 2013;61(2):220–227. doi: 10.1016/j.applthermaleng.2013.07.028
  • Inagaki T, Okamoto Y. Diagnosis of the leakage point on a structure surface using infrared thermography in near ambient conditions. NdT&E Int. 1997;30(3):135–142. doi: 10.1016/S0963-8695(96)00040-0
  • Liu SJ, Zhang YB, Wu LX, et al. Infrared radiation feature of concrete during fracturing and water seepage process. Chin J Geotech Eng. 2009;28(1):53–58. doi: 10.3321/j.issn:1000-6915.2009.01.007
  • Dou HT, Huang HW, Xue YD. Experimental study of factors affecting thermal infrared radiation characteristics of tunnel lining water leakage. Chin J Geotech Eng. 2011;30(12):2426–2434. doi: CNKI:SUN:YSLX.0.2011-12-006
  • Dou HT, Huang HW, Xue YD. Model test on infrared radiation feature of tunnel seepage and image processing. Chin J Geotech Eng. 2011;30(S2):3386–3391. doi: CNKI:SUN:YSLX.0.2011-S2-005
  • Peng B, Zhang DX. Study on detecting concentrated leakage in earth-rock dam by infrared imaging technique. Sci Technol Eng. 2016;16(11):93–98+103. doi: 10.3969/j.issn.1671-1815.2016.11.017
  • Johansen O Thermal conductivity of soils [ master’s thesis]. Norway: University of Trondheim, 1975.
  • Campbell GS. Soil physics with basic. Soil Sci. 1986;142(6):367–368. doi: 10.1097/00010694-198612000-00007
  • Thomas HR, Ewen J. The thermal probe—a new method and its use on an unsaturated sand. Géotech. 1987;37(1):91–105. doi: 10.1680/geot.1987.37.1.91
  • Côtéj KJ. A generalized thermal conductivity model for soils and construction materials. Can Geotech J. 2005;42(2):443–458. doi: 10.1139/t04-106
  • Lu S, Ren T, Gong Y, et al. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J. 2007;71(1):8–14.
  • Lu YL, Lu S, Horton R, et al. An empirical model for estimating soil thermal conductivity from texture, water content, and bulk density. Soil Sci Soc Am J. 2014;78(6):1859–1868.
  • Nikoosokhan S, Nowamooz H, Chazallon C. Effect of dry density, soil texture and time-spatial variable water content on the soil thermal conductivity. Geomech Geoeng. 2015;11(2):149–158. doi: 10.1080/17486025.2015.1048313
  • Su LJ, Wang QJ, Wang S, et al. Soil thermal conductivity model based on basic soil physical basic parameters. Trans Chin Soc Agric Eng. 2016;32(2):127–133. doi: 10.11975/j.issn.1002-6819.2016.02.019
  • He HL, Zhao Y, Dyck MF, et al. A modified normalized model for predicting effective soil thermal conductivity. Acta Geotech. 2017;12(6):1281–1300.
  • Ren J, Men L, Zhang W, et al. A new empirical model for the estimation of soil thermal conductivity. Environ Geol. 2019;78(12). 361.1–.361.16. 10.1007/s12665-019-8360-7
  • Witherspoon PA, Wang JSY, Iwai K, et al. Validity of cubic law for fluid flow in a deformable rock fracture. Water Res Res. 1980;16(6):1016–1024.
  • Chen JS, Dong HZ, Wu QL, et al. Detection of leakage passage in fissure rock with assumptive heat source method. Chin J Geotech Eng. 2005;2005(22):4019–4024. doi: CNKI:SUN:YSLX.0.2005-22-003
  • Dong HZ, Chen JS. Model research of heat source method by using water temperature distribution in borehole to determine seepage velocity of dyke. Hydrogeol Eng Geol. 2023;2003(5):40–43. doi: 10.3969/j.issn.1000-3665.2003.05.009
  • Wang XJ, Pan JS. Location detection of concentrated-leakage passages in dam by groundwater temperature. Chin J Geotech Eng. 2010;32(11):1800–1805. doi: 10.1103/PhysRevD.81.104025
  • Chen JS, Dong HZ, Yu B, et al. Using line-heat-resource method to study concentration leakage passage of dike. Prog Geophy. 2003;2003(3):400–403. doi: 10.3969/j.issn.1004-2903.2003.03.008
  • Wang XJ, Zeng CN, Chen JS. Using a stable temperature field to detect concentrated seepage on the surface of embankments. Yellow River. 2008;2008(9):93–95+97. doi: 10.3969/j.issn.1000-1379.2008.09.044
  • Wang XJ, Chen JS. A study of temperature field tracer method used to detect tubular leakage in dam. Hydrogeol Eng Geol. 2006;2006(4):31–36. doi: 10.3969/j.issn.1000-3665.2006.04.009
  • Yosef TY, Song CR, Chang KT. Hydro-thermal coupled analysis for health monitoring of embankment dams. Acta Geotech. 2018;13:447–455. doi: 10.1007/s11440-017-0571-z
  • Lu WD. Variational methods in differential equations. Beijing: Science Press; 2003.
  • Zhang T. Numerical analysis. Beijing: Metallurgical Industry Press; 2001.
  • Narasimhan TN, Witherspoon PA. Numerical model for saturated-unsaturated flow in deformable porous media: 3. Appl Water Resour Res. 1978;14(6):1017–1034. doi: 10.1029/WR014i006p01017
  • Jing L, Tsang CF, Stephansson O. DECOVALEX—an international co-operative research project on mathematical models of coupled THM processes for safety analysis of radioactive waste repositories. Int J Rock Mech Min Sci Geomech Abstr. 1995;32(5):389–398. doi: 10.1016/0148-9062(95)00031-B
  • Klepikova M, Brixel B, Jalali M. Transient hydraulic tomography approach to characterize main flowpaths and their connectivity in fractured media. Adv Water Resour. 2020;136:103500. doi: 10.1016/j.advwatres.2019.103500
  • Zhu BF. Finite element method for analysing temperature field of nonhomogeneous and anisotropic body and the influence of flow in cracks. Water Resour Hydropower Eng. 2007;2007(3):33–35. doi: 10.3969/j.issn.1000-0860.2007.03.009
  • Chai JR, Han QZ, Wu TQ. Analytical calculation of a coupled model of one dimensional seepage field and temperature field in rock mass. Ground Water. 1999;1999(4):3–5. doi: CNKI:SUN:DXSU.0.1999-04-009
  • Chai JR. On mathematical model for coupled seepage and temperature field in concrete dam. J Hydroelectr Eng. 2000;2000(1):27–35. doi: 10.3969/j.issn.1003-1243.2000.01.005
  • Chen B, Li N, Zhou RH. FEM analysis on fully coupled thermo- hydro-mechanic behavior of porous media. Chin J Geotech Eng. 2001;2001(4):467–472. doi: 10.3321/j.issn:1000-6915.2001.04.010
  • Deng ST, Liao MJ. Research on temperature field and temperature stress of concrete gravity dam heightening. Sci Technol West Chin. 2008;158(33):11–13+19.
  • Wu ZW, Song HZ. Study on shallow geothermal field and seepage field coupling based on Lu model. J Hydraul Eng. 2015;46(3):326–333. doi: 10.1088/1475-7516/2015/03/009
  • Xu Y, Xu Q. Finite element analysis of seepage based on COMSOL multiphysics. Eng J Wuhan Univ. 2014;47(2):165–170. doi: CNKI:SUN:WSDD.0.2014-02-005
  • Guo QH, Hu TY, Liu J, et al. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications. Adv Earth Sci. 2021;40(9):1550–1569.
  • Su HZ, Ma JJ, Zhou RL, et al. Detect and identify earth rock embankment leakage based on UAV visible and infrared images. Infrared Phys Technol. 2022;122:104105. doi: 10.1016/j.infrared.2022.104105
  • Zhou RL, Su HZ, Liu MK, et al. Experimental study on leakage detection of earth rockfill dams using passive infrared thermography. J Hydraul Eng. 2022;53(1):54–67.
  • Wang YL, Tang L, Qian SR. Early unsteady leakage detection system of small reservoir dam based on UAV and infrared thermal image. Nondestr Test. 2020;42(12):61–65. doi: 10.11973/wsjc202012015
  • Bukowska-Belniak B, Leśniak A. Image processing of leaks detection in sequence of infrared images. Meas Autom Monit. 2017;63(4):131–134.
  • Chen CY, Chen SC, Chen KH, et al. Thermal monitoring and analysis of the large-scale field earth-dam breach process. Environ Monit Assess. 2018;190(8):1–17. doi: 10.1007/s10661-018-6869-y
  • Ma YM, Mustapha F, Ishak MR, et al. Structural fault diagnosis of UAV based on convolutional neural network and data processing technology. Nondestr Test Eval. 2023;1–20.
  • Zhang D, Watson R, MacLeod C, et al. Implementation and evaluation of an autonomous airborne ultrasound inspection system. Nondestr Test Eval. 2022;37(1):1–21.
  • Zhou RL, Su HZ, Wen ZP. Experimental study on leakage detection of grassed earth dam by passive infrared thermography. NdT E Int. 2022;126:102583. doi: 10.1016/j.ndteint.2021.102583
  • Zhou RL, Wen ZP, Su HZ. Automatic recognition of earth rock embankment leakage based on UAV passive infrared thermography and deep learning. ISPRS-J Photogramm Remote Sens. 2022;191:85–104. doi: 10.1016/j.isprsjprs.2022.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.