93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GBC-BCD: an improved bridge crack detection method based on bidirectional Laplacian pyramid structure with lightweight attention mechanism convolution

, , , , &
Received 14 Nov 2023, Accepted 29 Mar 2024, Published online: 05 Apr 2024

References

  • Deng L, Wang W, Yu Y. State-of-the-art review on the causes and mechanisms of bridge collapse. J Perform Constr Facil. 2016;30(2):04015005. doi:10.1061/(ASCE)CF.1943-5509.0000731
  • Huthwohl P, Lu R, Brilakis I. Challenges of bridge maintenance inspection. Proceeding of 16th International Conference on Computing in Civil and Building Engineering; Osaka, Japan; 2016. p. 51–58.
  • Czimmermann T, Ciuti G, Milazzo M, et al. Visual-based defect detection and classification approaches for industrial applications—a survey. Sensors. 2020;20(5):1459. doi: 10.3390/s20051459
  • Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: A survey. Proceedings of the IEEE; 2023. doi: 10.1109/JPROC.2023.3238524
  • Borji A, Cheng M-M, Hou Q, et al. Salient object detection: A survey. Comp Visual Media. 2019;5(2):117–150. doi: 10.1007/s41095-019-0149-9
  • He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–1916. doi:10.1109/TPAMI.2015.2389824
  • Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Proceedings of Advances in Neural Information Processing Systems; 28, Montreal, Canada, 2015.
  • Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the Leee Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA; 2016: p. 779–788.
  • Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector. Proceedings of Computer Vision–ECCV 2016: 14th European Conference; 2016;The Netherlands. 2016. p. 21–37.
  • Zhang J, He Y, Chen W, et al. CorrFormer: context-aware tracking with cross-correlation and transformer. Comp Elec Eng. 2024;114:109075. doi:10.1016/j.compeleceng.2024.109075
  • Zhang J, Feng W, Yuan T, et al. Scstcf: Spatial-channel selection and temporal regularized correlation filters for visual tracking. Appl Soft Comput. 2022;118:108485. doi:10.1016/j.asoc.2022.108485
  • Zhang J, Sun J, Wang J, et al. An object tracking framework with recapture based on correlation filters and siamese networks. Comp Elec Eng. 2022;98:107730. doi: 10.1016/j.compeleceng.2022.107730
  • Zhao X, Wang G, He Z, et al. A survey of moving object detection methods: a practical perspective. Neurocomputing. 2022;503:28–48. doi:10.1016/j.neucom.2022.06.104
  • Kulchandani JS, Dangarwala KJ. Moving object detection: Review of recent research trends. Proceedings of 2015 International Conference on Pervasive Computing (ICPC); Pune, India, 2015. p. 1–5.
  • Yazdi M, Bouwmans T. New trends on moving object detection in video images captured by a moving camera: a survey. Comput Sci Rev. 2018;28:157–177. doi:10.1016/j.cosrev.2018.03.001
  • Mei Q, Gül M, Azim R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Autom Constr. 2020;110:103018. doi: 10.1016/j.autcon.2019.103018
  • Cha Y-J, Choi W, Büyüköztürk O. Deep learning-based crack damage detection using convolutional neural networks. Comput-Aided Civ Infrastruct Eng. 2017;32(5):361–378. doi:10.1111/mice.12263
  • Zhang L, Yang F, Zhang YD, et al. Road crack detection using deep convolutional neural network. Proceedings of 2016 IEEE Iternational Conference on Image Processing (ICIP); Phoenix, Arizona, USA, 2016. p. 3708–3712.
  • Nhat-Duc H, Nguyen Q-L, Tran V-D. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom Constr. 2018;94:203–213. doi:10.1016/j.autcon.2018.07.008
  • Chen F-C, Jahanshahi MR. NB-CNN: Deep learning-based crack detection using convolutional neural network and naïve bayes data fusion. IEEE Trans Ind Electron. 2018;65(5):4392–4400. doi:10.1109/TIE.2017.2764844
  • Kouzehgar M, Krishnasamy Tamilselvam Y, Vega Heredia M, et al. Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks. Autom Constr. 2019;108:102959. doi:10.1016/j.autcon.2019.102959
  • Wang X, Hu Z. Grid-based pavement crack analysis using deep learning. Proceedings of 2017 4th International Conference on Transportation Information and Safety (ICTIS); Banff, Alberta, Canada, 2017. p. 917–924.
  • Ee Park S, Eem S-H, Jeon H. Concrete crack detection and quantification using deep learning and structured light. Constr Build Mater. 2020;252:119096. doi:10.1016/j.conbuildmat.2020.119096
  • Zhang Y, Huang J, Cai F. On bridge surface crack detection based on an improved yolo v3 algorithm. IFAC-Papersonline. 2020;53(2):8205–8210. doi:10.1016/j.ifacol.2020.12.1994
  • Du Y, Pan N, Xu Z, et al. Pavement distress detection and classification based on yolo network. Int J Pavement Eng. 2021;22(13):1659–1672. doi:10.1080/10298436.2020.1714047
  • Xiang X, Wang Z, Qiao Y. An improved yolov5 crack detection method combined with transformer. IEEE Sens J. 2022;22(14):14328–14335. doi:10.1109/JSEN.2022.3181003
  • Jacob B, Kligys S, Chen B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Salt Lake City, UT, USA, 2018. p. 2704–2713,
  • Luo J-H, Wu J. An entropy-based pruning method for cnn compression. arXiv Preprint arXiv: 1706.05791. 2017. doi: 10.48550/arXiv.1706.05791
  • Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. arXiv Preprint arXiv: 1503.02531. 2015. doi: 10.48550/arXiv.1503.02531
  • Li Y, Liu J, Wang L. Lightweight network research based on deep learning: A review. Proceedings of 2018 37th Chinese Control Conference (CCC); Wuhan, China, 2018. p. 9021–9026.
  • Ma N, Zhang X, Zheng H-T, et al. Shufflenet v2: Practical guidelines for efficient cnn architecture design. Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018. p. 116–131.
  • Chen Y, Xia R, Yang K, et al. MICU: Image super-resolution via multi-level information compensation and U-net. Expert Syst Appl. 2024;245:123111. doi:10.1016/j.eswa.2023.123111
  • Zhang J, Lv Y, Tao J, et al. A robust real-time anchor-free traffic sign detector with one-level feature. IEEE Transactions on Emerging Topics in Computational Intelligence; 2024. p. 1–15. doi: 10.1109/TETCI.2024.3349464
  • Kilic G, Unluturk MS. Corroboration of ndt and deconvolution neural networks for pedestrian bridge health assessment. Case Stud NondestrTest Eval. 2015;30(1):89–103. doi:10.1080/10589759.2014.1002839
  • Oswald-Tranta B. Thermo-inductive crack detection. Case Stud NondestrTest Eval. 2007;22(2–3):137–153. doi:10.1080/10589750701448225
  • Reis L, Da Costa PR, Pereira R, et al. Crack path and fracture surface analysis of ultrasonic fatigue testing under multiaxial loadings. Eng Fail Anal. 2022;142:106785. doi:10.1016/j.engfailanal.2022.106785
  • Sieber L, Urbanek R, Bär J. Crack-detection in old riveted steel bridge structures. Procedia Struct Integr. 2019;17:339–346. doi:10.1016/j.prostr.2019.08.045
  • Omar T, Nehdi ML. Remote sensing of concrete bridge decks using unmanned aerial vehicle infrared thermography. Autom Constr. 2017;83:360–371. doi:10.1016/j.autcon.2017.06.024
  • Valença J, Puente I, Júlio ENBS, et al. Assessment of cracks on concrete bridges using image processing supported by laser scanning survey. Constr Build Mater. 2017;146:668–678. doi:10.1016/j.conbuildmat.2017.04.096
  • Lee S, Kalos N. Bridge inspection practices using non-destructive testing methods. J Civil Eng Manage. 2015;21(5):654–665. doi:10.3846/13923730.2014.890665
  • Li M, Pan F, Li X, et al. Residual life prediction of multi-layer composite coatings based on vector quantised and attention-variational AutoEncoder network. Case Stud NondestrTest Eval. 2024;1–21. doi: 10.1080/10589759.2024.2317863
  • He K, Gkioxari G, Dollár P, et al. Mask r-cnn. Proceedings of the IEEE International Conference on Computer Vision; Venice, Italy, 2017. p. 2961–2969.
  • Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv Preprint arXiv: 1804.02767. 2018. doi: 10.48550/arXiv.1804.02767
  • Huang J, Zhang H, Wang L, et al. Improved yolov3 model for miniature camera detection. Opt Laser Technol. 2021;142:107133. doi: 10.1016/j.optlastec.2021.107133
  • Kou X, Liu S, Cheng K, et al. Development of a yolo-v3-based model for detecting defects on steel strip surface. Measurement. 2021;182:109454. doi:10.1016/j.measurement.2021.109454
  • Yu Z, Shen Y, Shen C. A real-time detection approach for bridge cracks based on yolov4-fpm. Autom Constr. 2021;122:103514. doi:10.1016/j.autcon.2020.103514
  • Jocher G, Chaurasia A, Qiu J. Ultralytics YOLO. 2023 January. https://github.com/ultralytics/ultralytics.
  • Ding Y, Zhang Z, Zhao X, et al. Multi-scale receptive fields: graph attention neural network for hyperspectral image classification. Expert Syst Appl. 2023;223:119858. doi:10.1016/j.eswa.2023.119858
  • Chen Z, Wu G, Gao H, et al. Local aggregation and global attention network for hyperspectral image classification with spectral-induced aligned superpixel segmentation. Expert Syst Appl. 2023;232:120828. doi:10.1016/j.eswa.2023.120828
  • Chen Z, Hong D, Gao H. Grid network: Feature extraction in anisotropic perspective for hyperspectral image classification. IEEE Geosci Remote Sensing Lett. 2023;20:1–5. doi: 10.1109/LGRS.2023.3297612
  • Chen Z, Wang Y, Gao H, et al. Temporal difference-guided network for hyperspectral image change detection. Int J Remote Sens. 2023;44(19):6033–6059. doi:10.1080/01431161.2023.2258563
  • Tan M, Pang R, Le QV. Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2020. p. 10781–10790. doi: 10.48550/arXiv.1911.09070
  • Wang L, Chen Z, Zou H, et al. A deep learning-based high-temperature overtime working alert system for smart cities with multi-sensor data. Case Stud NondestrTest Eval. 2024;39(1):164–184. doi: 10.1080/10589759.2023.2274008
  • Han S, Mao H, Dally WJ. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv Preprint arXiv: 1510.00149. 2015. doi: 10.48550/arXiv.1510.00149
  • Tan M, Le Q Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning; PMLR, 2019. p. 6105–6114. doi: 10.1080/01431161.2023.2258563
  • Sadra Naddaf-Sh MMNS, Kashani AR, Zargarzadeh H. An efficient and scalable deep learning approach for road damage detection. Proceedings of 2020 IEEE International Conference on Big Data (Big Data); Atlanta, GA, USA: IEEE. 2020. p. 5602–5608.
  • Hou Q, Zhou D, Feng J. Coordinate attention for efficient mobile network design. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; Nashville, TN, USA. 2021. p. 13713–13722.
  • Li L-F, Ma W-F, Li L, et al. Research on detection algorithm for bridge cracks based on deep learning. Acta Autom Sin. 2019;45(9):1727–1742. doi: 10.16383/j.aas.2018.c170052
  • Cao Y, Pang D, Yan Y, et al. A photovoltaic surface defect detection method for building based on deep learning. J Buil Eng. 2023;70:106375. doi: 10.1016/j.jobe.2023.106375

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.