Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 32, 2014 - Issue 2
809
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Environmental Exposure to Lead (Pb) and Variations in Its Susceptibility

, &

REFERENCES

  • Agency for Toxic Substances and Disease Registry. Priority list of hazardous substances. 2011. http://wwwatsdrcdcgov/SPL/indexhtml.
  • Cheng H, Hu Y. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut. 2010;158(5):1134–1146.
  • Flora G, Gupta D, Tiwari A. Toxicity of lead: a review with recent updates. Interdiscip Toxicol. 2012;5(2):47–58.
  • Shabnam Pirooty MG. Toxic effects of Lead on different organs of the human body. Journal of Kashan University of Medical Science. 2013;16(7):761–762.
  • Pilsner JR, Hu H, Ettinger A, Sanchez BN, Wright RO, Cantonwine D, et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environm Health Perspect. 2009;117(9):1466–1471.
  • Senut MC, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, et al. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics. 2012;4(6):665–674.
  • Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H. Alzheimer's disease and environmental exposure to lead: the epidemiologic evidence and potential role of epigenetics. Curr Alzheimer Res. 2012;9(5):563–573.
  • World Health Organization. childhood lead poisoning. 2010. . http://www.who.int/ceh/ publications/l eadguidance.pdf.
  • Food Safety Authority of Ireland. Investigation into levels of Cadmium and Lead in Herbal Food Supplements Available on the Irish Market. Monitoring & Surveillance Series Chemical. 2010. . www.fsai.ie.
  • Park JUOS, Kim SH, Kim YH, Park RJ, Moon JD. A study on the association between blood lead levels and habitual tobacco and alcohol use in Koreans with no occupational lead exposure. Korean J Occup Environ Med. 2008;20:165–173.
  • Kim NS, Lee BK. National estimates of blood lead, cadmium, and mercury levels in the Korean general adult population. Int Arch Occup Environ Health. 2011;84(1):53–63.
  • Korean CDC/Ministry of Environment. A final report on the study of blood heavy metals of general population. . [In Korean]. 2005. . http://webbook.me.go.kr/DLi-File/F005/000/ 151341.pdf.
  • Kim DI, Kim KY, Kim JM, Jung KY, Kim JY, Chang HS, Lee YH, Choi AH. The levels of blood lead and zinc protoporphyrin for healthy urban population in Korea. Korean J Prev Med. 1992;25(3):5–22.
  • Kim H, Cho SH. Estimation of the geometric means and the reference values of blood lead levels among Koreans. J Kor Med Sci. 1994;9:304–312.
  • Smolders R, Alimonti A, Cerna M, Den Hond E, Kristiansen J, Palkovicova L, et al. Availability and comparability of human biomonitoring data across Europe: a case-study on blood-lead levels. Sci Total Environ. 2010;408(6):1437–145.
  • Whitfield JB, Dy V, McQuilty R, Zhu G, Montgomery GW, Ferreira MA, et al. Evidence of genetic effects on blood lead concentration. Environ Health Perspect. 2007;115(8):1224–1230.
  • Gundacker C, Gencik M, Hengstschlager M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutation Res. 2010;705(2):130–140.
  • Pizzol M, Thomsen M, Andersen MS. Long-term human exposure to lead from different media and intake pathways. Sci Total Environ. 2010;408(22):5478–88.
  • Joung HJ. Research on exposure assessment methodologies for food borne hazardous substances in environmental epidemiological studies. . [In Korean]. 2010 . National Institute Environmental Research (NIER). www.prism.go.kr.
  • Petroczi A, Naughton DP. Mercury, cadmium and lead contamination in seafood: a comparative study to evaluate the usefulness of Target Hazard Quotients. Food Chem Tox. 2009;47(2):298–302.
  • Ciobanu CSB, Cuciureanu R. Estimation of dietary intake of cadmium and lead through food consumption. Rev Med Chir Soc Med Nat Iasi. 2012;116(2):617–623.
  • EFSA. Scientific opinion on lead in food. 2013. . http://wwwefsaeuropaeu/de/scdocs/doc/1570pdf.
  • Rose M, Baxter M, Brereton N, Baskaran C. Dietary exposure to metals and other elements in the 2006 UK Total Diet Study and some trends over the last 30 years. Food Addit Contam. 2010;27(10):1380–1404.
  • Arnich N, Sirot V, Riviere G, Jean J, Noel L, Guerin T, et al. Dietary exposure to trace elements and health risk assessment in the 2nd French Total Diet Study. Food Chem Tox. 2012;50(7):2432–2449.
  • Othman ZA. Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules. 2010;15(10):7482–7497.
  • Nasreddine L, Nashalian O, Naja F, Itani L, Parent-Massin D, Nabhani-Zeidan M, et al. Dietary exposure to essential and toxic trace elements from a Total diet study in an adult Lebanese urban population. Food Chem Tox. 2010;48(5):1262–1269.
  • Crentsil Kofi Bempah AB-K, Osei-Tutu A, Denutsui D, Bentil N. Assessing potential dietary intake of heavy metals in some selected fruits and vegetables from Ghanaian markets. Elixir Pollution. 2011;39:4921–4926.
  • Niisoe T, Harada KH, Hitomi T, Watanabe T, Hung NN, Ishikawa H, et al. Environmental ecological modeling of human blood lead levels in East Asia. Environ Sci Technol. 2011;45(7):2856–2862.
  • Chen Chen YQ, Chuanyong QC. Assessment of daily intake of toxic elements due to consumption of vegetables, fruits, meat, and seafood by inhabitants of Xiamen, China. J Food Sci. 2011;76(8):181–188.
  • Igwegbe AOBH, Hassan TM, Gibali AS. Effect of a highway's traffic on the level of lead and cadmium in fruits and vegetables grown along the roadsides. J Food Saf. 1992;13:7–18.
  • Sun H-fLY-h, Yan-fang JI, Yang L-s, Wang W-y, Li H-r. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Transactions of Nonferrous Metals Society of China. 2010;20:308–314.
  • U.S. Food and Drug Administration. Total diet study statistics on element results. 2010. . http://wwwfdagov/downloads/foodtotaldietstudy/ucm184301pdf.
  • Mushak P. Lead and Public Health: Science, Risk and Regulation, Oxford, U.K., Elsevier;2011. (part 2):228–230.
  • Health Canada. Final human health state of the science report on lead. 2007. . http://wwwhc-scgcca/ewh-semt/pubs/contaminants/dhhssrl-rpecscepsh/index-engphp#a74.
  • Oh EHL, HS, Jang JY, Lee E. Human multi-route exposure assessment of lead and cadmium for Korean volunteers. J Prev Med Public Health. 2006;39:53–58.
  • Korea Food & Drug Administration. Food and heavy metals. . [In Korean]. 2011. . www.kfda.go.kr.
  • Fujihara J, Agusa T, Yasuda T, Soejima M, Kato H, Panduro A, et al. Ethnic variation in genotype frequencies of delta-aminolevulinic acid dehydratase (ALAD). Toxicol Lett. 2009;191(2–3):236–239.
  • Scinicariello F, Yesupriya A, Chang MH, Fowler BA. Modification by ALAD of the association between blood lead and blood pressure in the U.S. population: results from the Third National Health and Nutrition Examination Survey. Environ Health Perspect. 2010;118(2):259–264.
  • Shaik AP, Jamil K. A study on the ALAD gene polymorphisms associated with lead exposure. Toxicol Ind Health. 2008;24(7):501–506.
  • Kelada SN, Shelton E, Kaufmann RB, Khoury MJ. Delta-aminolevulinic acid dehydratase genotype and lead toxicity: a HuGE review. Am J Epidemiol. 2001;154(1):1–13.
  • Lee BK, Lee GS, Stewart WF, Ahn KD, Simon D, Kelsey KT, et al. Associations of blood pressure and hypertension with lead dose measures and polymorphisms in the vitamin D receptor and delta-aminolevulinic acid dehydratase genes. Environ Health Persepct. 2001;109(4):383–389.
  • Kim HS, Lee SS, Lee GS, Hwangbo Y, Ahn KD, Lee BK. The protective effect of delta-aminolevulinic acid dehydratase 1-2 and 2-2 isozymes against blood lead with higher hematologic parameters. Environ Health Persepct. 2004;112(5):538–541.
  • Lee SSKJ, Kim NS, Kim HS, Ahn KD, Lee BK. Associations of ALAD Genotype with Renal Function Indices in Lead Workers. Korean J Occup Environ Med. 2004;16(2):200–209.
  • Zhao Y, Wang L, Shen HB, Wang ZX, Wei QY, Chen F. Association between delta-aminolevulinic acid dehydratase (ALAD) polymorphism and blood lead levels: a meta-regression analysis. J Toxicol Environ Health A. 2007;70(23):1986–1994.
  • Pawlas N, Broberg K, Olewinska E, Prokopowicz A, Skerfving S, Pawlas K. Modification by the genes ALAD and VDR of lead-induced cognitive effects in children. Neurotoxicology. 2012;33(1):37–43.
  • Fredrick K, Ibba M. How the sequence of a gene can tune its translation. Cell. 2010;141(2):227–229.
  • Epstein RJ, Lin K, Tan TW. A functional significance for codon third bases. Gene. 2000;245(2):291–298.
  • Li C, Xu M, Wang S, Yang X, Zhou S, Zhang J, et al. Lead exposure suppressed ALAD transcription by increasing methylation level of the promoter CpG islands. Toxicol Lett. 2011;203(1):48–53.
  • Jozefczak M, Remans T, Vangronsveld J, Cuypers A. Glutathione is a key player in metal-induced oxidative stress defenses. Int J Mol Sci. 2012;13(3):3145–3175.
  • Sirivarasai J, Wananukul W, Kaojarern S, Chanprasertyothin S, Thongmung N, Ratanachaiwong W, et al. Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. Biomed Res Int. 2013. . http://dx.doi.org/10.1155/2013/474963.
  • Eum KD, Wang FT, Schwartz J, Hersh CP, Kelsey K, Wright RO, et al. Modifying roles of glutathione S-transferase polymorphisms on the association between cumulative lead exposure and cognitive function. Neurotoxicology. 2013;39C:65–71.
  • Lee BK, Lee SJ, Joo JS, Cho KS, Kim NS, Kim HJ. Association of Glutathione S-transferase genes (GSTM1 and GSTT1) polymorphisms with hypertension in lead-exposed workers. Mol Cell Toxicol. 2012;8(2):203–208.
  • Kim JH, Lee KH, Yoo DH, Kang D, Cho SH, Hong YC. GSTM1 and TNF-alpha gene polymorphisms and relations between blood lead and inflammatory markers in a non-occupational population. Mutation Res. 2007;629(1):32–9.
  • Park SK, Hu H, Wright RO, Schwartz J, Cheng Y, Sparrow D, et al. Iron metabolism genes, low-level lead exposure, and QT interval. Environ Health Perspect. 2009;117(1):80–85.
  • Wright RO, Silverman EK, Schwartz J, Tsaih SW, Senter J, Sparrow D, et al. Association between hemochromatosis genotype and lead exposure among elderly men: the normative aging study. Environ Health Perspect. 2004;112(6):746–750.
  • Entrez Gene. HFE hemochromatosis [Homo sapiens (human)]. . http://www.ncbi.nlm.nih.gov/gene?cmd=Retrieve&dopt=full_report&list_uids=3077.
  • Hanson EH, Imperatore G, Burke W. HFE gene and hereditary hemochromatosis: a HuGE review. Human genome epidemiology. Am J Epidemiol. 2001;154(3):193–206.
  • Cantonwine D, Hu H, Tellez-Rojo MM, Sanchez BN, Lamadrid-Figueroa H, Ettinger AS, et al. HFE gene variants modify the association between maternal lead burden and infant birthweight: a prospective birth cohort study in Mexico City, Mexico. Environ Health. 2010;9:43.
  • Wang FT, Hu H, Schwartz J, Weuve J, Spiro AS, Sparrow D, et al. Modifying effects of the HFE polymorphisms on the association between lead burden and cognitive decline. Environ Health Perspect. 2007;115(8):1210–1215.
  • Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, et al. Mammalian metallothioneins: properties and functions. Metallomics. 2012;4(8):739–750.
  • Kayaalti Z, Aliyev V, Soylemezoglu T. The potential effect of metallothionein 2A -5A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels. Toxicol Appl Pharmacol. 2011;256(1):1–7.
  • Miura N. Individual susceptibility to cadmium toxicity and metallothionein gene polymorphisms: with references to current status of occupational cadmium exposure. Ind Health. 2009;47(5):487–494.
  • Lei L, Chang X, Rentschler G, Tian L, Zhu G, Chen X, et al. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta 2-microglobulin. Toxicol Appl Pharmacol. 2012;265(3):373–379.
  • Wang Y. A Gene-environment study of metallothionein single nucleotide polymorphisms, mercury biomarker levels and peripheral nerve function. . Dissertation, University of Michigan;2011.
  • Yang CC, Chen HI, Chiu YW, Tsai CH, Chuang HY. Metallothionein 1A polymorphisms may influence urine uric acid and N-acetyl-beta-D-glucosaminidase (NAG) excretion in chronic lead-exposed workers. Toxicology. 2013;306:68–73.
  • Chen HI, Chiu YW, Hsu YK, Li WF, Chen YC, Chuang HY. The association of metallothionein-4 gene polymorphism and renal function in long-term lead-exposed workers. Biol Trace Elem Res. 2010;137(1):55–62.
  • Tekin D, Kayaalti Z, Soylemezoglu T. The effects of metallothionein 2A polymorphism on lead metabolism: are pregnant women with a heterozygote genotype for metallothionein 2A polymorphism and their newborns at risk of having higher blood lead levels? Int Arch Occup Environ Health. 2012;85(6):631–637.
  • Krzeslak A, Forma E, Chwatko G, Jozwiak P, Szymczyk A, Wilkosz J, et al. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer. Toxicol Appl Pharmacol. 2013;268(3):278–285.
  • Kita K, Miura N, Yoshida M, Yamazaki K, Ohkubo T, Imai Y, et al. Potential effect on cellular response to cadmium of a single-nucleotide A –> G polymorphism in the promoter of the human gene for metallothionein IIA. Human Genetics. 2006;120(4):553–560.
  • Rezende VB, Amaral JH, Quintana SM, Gerlach RF, Barbosa F, Tanus-Santos JE. Vitamin D receptor haplotypes affect lead levels during pregnancy. Science Total Environ. 2010;408(21):4955–4960.
  • Krieg EF, Jr., Butler MA, Chang MH, Liu T, Yesupriya A, Dowling N, et al. Lead and cognitive function in VDR genotypes in the third National Health and Nutrition Examination Survey. Neurotoxicol Teratol. 2010;32(2):262–272.
  • GeneCards. Vitamin D (1,25- dihydroxyvitamin D3) receptor. 2011. . http://wwwgenecardsorg/cgi-bin/carddisppl?gene=VDR&search=vdr.
  • Valdivielso JM, Fernandez E. Vitamin D receptor polymorphisms and diseases. Clinica Chimica Acta. 2006;371(1–2):1–12.
  • Jain R. When too much sun is never enough: association of the VDR gene polymorphisms with insulin resistance. . Thesis of Auckland University of Technology;2010.
  • Garcia-Leston J, Roma-Torres J, Vilares M, Pinto R, Prista J, Teixeira JP, et al. Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ Int. 2012;43:29–36.
  • Rezende VB, Barbosa F, Jr., Montenegro MF, Sandrim VC, Gerlach RF, Tanus-Santos JE. Haplotypes of vitamin D receptor modulate the circulating levels of lead in exposed subjects. Arch Tox. 2008;82(1):29–36.
  • Weaver VM, Lee BK, Todd AC, Ahn KD, Shi W, Jaar BG, et al. Effect modification by delta-aminolevulinic acid dehydratase, vitamin D receptor, and nitric oxide synthase gene polymorphisms on associations between patella lead and renal function in lead workers. Environ Res. 2006;102(1):61–69.
  • Liang HJ, Yan YL, Liu ZM, Chen X, Peng QL, Wang J, et al. Association of XRCC3 Thr241Met polymorphisms and gliomas risk: evidence from a meta-analysis. Asian Pacific journal of cancer prevention. Asian Pac J Cancer Prev. 2013;14(7):4243–4247.
  • Liu XQ, Zhang Z. Relationship between XRCC3 gene polymorphism and susceptibility to lead poisoning in male lead-exposed workers. Zhonghua lao dong wei sheng zhi ye bing za zhi. 2013;31(6):401–404.
  • Athiyarath R, Arora N, Fuster F, Schwarzenbacher R, Ahmed R, George B, et al. Two novel missense mutations in iron transport protein transferrin causing hypochromic microcytic anaemia and haemosiderosis: molecular characterization and structural implications. Br J Haematol. 2013;163(3):404–407.
  • Roy A, Ettinger AS, Hu H, Bellinger D, Schwartz J, Modali R, et al. Effect modification by transferrin C2 polymorphism on lead exposure, hemoglobin levels, and IQ. Neurotoxicology. 2013;38:17–22.
  • Hopkins MR, Ettinger AS, Hernandez-Avila M, Schwartz J, Tellez-Rojo MM, Lamadrid-Figueroa H, et al. Variants in iron metabolism genes predict higher blood lead levels in young children. Environ Health Perspect. 2008;116(9):1261–1266.
  • Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6(7):820–827.
  • Antonio-Garcia MT, Masso-Gonzalez EL. Toxic effects of perinatal lead exposure on the brain of rats: involvement of oxidative stress and the beneficial role of antioxidants. Food Chem Tox. 2008;46(6):2089–2095.
  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 2004;32(14):4100–4108.
  • Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta. 2007;1775(1):138–162.
  • Li C, Yang X, Xu M, Zhang J, Sun N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol. 2013;51(4):225–229.
  • Kovatsi L, Georgiou E, Ioannou A, Haitoglou C, Tzimagiorgis G, Tsoukali H, et al. p16 promoter methylation in Pb2+ -exposed individuals. Clin Toxicol. 2010;48(2):124–128.
  • Choy RWY, Cheng ZL, Schekman R. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid beta (A beta) production in the trans-Golgi network. Proc Natl Acad Sci U S A. 2012;109(30):E2077–E2082.
  • Bihaqi SW, Huang H, Wu J, Zawia NH. Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease. J Alzheimers Dis. 2011;27(4):819–833.
  • Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med. 2009;46(9):1241–1249.
  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, et al. Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28(1):3–9.
  • Li YY, Chen T, Wan Y, Xu SQ. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ Toxicol. 2012;27(8):495–502.
  • Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27(5):1401–1410.
  • Romero R, Friel LA, Velez Edwards DR, Kusanovic JP, Hassan SS, Mazaki-Tovi S, et al. A genetic association study of maternal and fetal candidate genes that predispose to preterm prelabor rupture of membranes (PROM). Am J Obstet Gynecol. 2010;203(4):361e1–e30.
  • Bestor TH. The DNA methyltransferases of mammals. Human Molecular Genetics. 2000;9(16):2395–2402.
  • Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res. 2005;79(6):734–746.
  • Robertson KD, Wolffe AP. DNA methylation in health and disease. Nat Rev Genet. 2000;1(1):11–19.
  • Yasui DH, Peddada S, Bieda MC, Vallero RO, Hogart A, Nagarajan RP, et al. Integrated epigenomic analyses of neuronal MeCP2 reveal a role for long-range interaction with active genes. Proc Natl Acad Sci U S A. 2007;104(49):19416–19421.
  • Schneider JS, Kidd SK, Anderson DW. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol Lett. 2013;217(1):75–81.
  • Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;61(8):3225–3229.
  • Ronneberg JA, Tost J, Solvang HK, Alnaes GI, Johansen FE, Brendeford EM, et al. GSTP1 promoter haplotypes affect DNA methylation levels and promoter activity in breast carcinomas. Cancer Res. 2008;68(14):5562–5571.
  • Li C, Yang X, Xu M, Zhang J, Sun N. Association between GSTP1 CpG methylation and the early phase of lead exposure. Toxicol Mech Methods. 2013. . doi:10.3109/15376516.2013.859195.
  • Baba Y, Murata A, Watanabe M, Baba H. Clinical implications of the LINE-1 methylation levels in patients with gastrointestinal cancer. Surg Today. 2013. . doi:10.1007/s00595-013-0763-6.
  • Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009;179(7):572–578.
  • Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118(6):790–795.
  • Bollati V, Galimberti D, Pergoli L, Dalla Valle E, Barretta F, Cortini F, et al. DNA methylation in repetitive elements and Alzheimer disease. Brain Behav Immun. 2011;25(6):1078–1083.
  • Agarwal P, Sandey M, DeInnocentes P, Bird RC. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem. 2013;114(6):1355–1363.
  • Khor GH, Froemming GR, Zain RB, Abraham MT, Omar E, Tan SK, et al. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int J Med Sci. 2013;10(12):1727–1739.
  • Ha PK, Califano JA. Promoter methylation and inactivation of tumour-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol. 2006;7(1):77–82.
  • Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D, et al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer. 2006;94(4):561–568.
  • Sharma G, Mirza S, Prasad CP, Srivastava A, Gupta SD, Ralhan R. Promoter hypermethylation of p16INK4A, p14ARF, CyclinD2 and Slit2 in serum and tumor DNA from breast cancer patients. Life Sciences. 2007;80(20):1873–1881.
  • Jablonowski Z, Reszka E, Gromadzinska J, Wasowicz W, Sosnowski M. Hypermethylation of p16 and DAPK promoter gene regions in patients with non-invasive urinary bladder cancer. Arch Med Sci. 2011;7(3):512–516.
  • Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutation Res. 2013;757(2):125–131.
  • The International Agency for Research on Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans. 2006;87:378.
  • World Health Organization. Childhood lead poisoning. 2010. . http://wwwwhoint/ceh/publications/ leadguidancepdf.
  • Karrari P, Mehrpour O, Abdollahi M. A systematic review on status of lead pollution and toxicity in Iran;Guidance for preventive measures. DARU Journal of Pharmaceutical Sciences. 2012;20(1):2.
  • Jones RL, Homa DM, Meyer PA, Brody DJ, Caldwell KL, Pirkle JL, et al. Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988–2004. Pediatrics. 2009;123(3):e376–385.
  • Cunningham E. What role does nutrition play in the prevention or treatment of childhood lead poisoning? J Acad Nutr Diet. 2012;112(11):. 1916.
  • American Academy of Pediatrics Committee on Environmental H. Lead exposure in children: prevention, detection, and management. Pediatrics. 2005;116(4):1036–1046.
  • Park S, Lee BK. Inverse relationship between fat intake and blood lead levels in the Korean adult population in the KNHANES 2007–2009. Science Total Environ. 2012;430:161–166.
  • Liu J, McCauley L, Compher C, Yan C, Shen X, Needleman H, et al. Regular breakfast and blood lead levels among preschool children. Environ Health. 2011;10:28.
  • Chen L, Yang X, Jiao H, Zhao B. Tea catechins protect against lead-induced ROS formation, mitochondrial dysfunction, and calcium dysregulation in PC12 cells. Chem Res Toxicol. 2003;16(9):1155–1161.
  • Patra RC, Swarup D, Dwivedi SK. Antioxidant effects of alpha tocopherol, ascorbic acid and L-methionine on lead induced oxidative stress to the liver, kidney and brain in rats. Toxicology. 2001;162(2):81–88.
  • Massadeh AM, Al-Safi SA, Momani IF, Alomary AA, Jaradat QM, AlKofahi AS. Garlic (Allium sativum L.) as a potential antidote for cadmium and lead intoxication: cadmium and lead distribution and analysis in different mice organs. Biol Trace Elem Res. 2007;120(1–3):227–234.
  • Kim M, Bae M, Na H, Yang M. Environmental toxicants—induced epigenetic alterations and their reversers. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2012;30(4):323–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.