Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 33, 2015 - Issue 3
2,589
Views
202
CrossRef citations to date
0
Altmetric
Original Articles

Antimicrobial Activity of Gold Nanoparticles and Ionic Gold

, , &

REFERENCES

  • Louis C, Pluchery O. Gold Nanoparticles for Physics, Chemistry and Biology. London: Imperial College Press; 2012.
  • Freestone I, Meeks N, Sax M, Higgitt C. The Lycurgus cup—a Roman nanotechnology. Gold Bull. 2007;40(4):270–277.
  • Franck S. Gold ruby glasses. Glass Technol. 1984;25:47.
  • Verit M, Santopadre P. Analysis of gold-colored ruby glass tesserae in Roman Church mosaics of the fourth to twelfth centuries. J Glass Studies. 2010;52(10):11–24.
  • von Kerssenbrock-Krosigk D. Glass of The Alchemists: Lead Crystal-Gold Ruby, 1650–1750 Corning Museum of Glass: New York; 2008.
  • Carbert J. Gold-based enamel colours. Gold Bull. 1980;13(4):144–150.
  • Mie G. Contribution to the optical properties of turbid media, in particular of colloidal suspensions of metals. Ann Phys (Leipzig). 1908;25:377–452.
  • Bond G: The early history of catalysis by gold. Gold Bull 2008, 41(3):235–241.
  • Bond GC, Louis C, Thompson DT. Catalysis by gold. Gold Bull. 2006;39:3.
  • Bond GC, Sermon PA. Gold catalysts for olefin hydrogenation. Gold Bull. 1973;6(4):102–105.
  • Meyer R, Lemire C, Shaikhutdinov SK, Freund HJ. Surface chemistry of catalysis by gold. Gold Bull. 2004;37(1–2):72–124.
  • Thompson D: CatGold news. Gold Bull. 2009;42(1):61–61.
  • Blaber MG, Arnold MD, Harris N, Ford MJ, Cortie MB. Plasmon absorption in nanospheres: A comparison of sodium, potassium, aluminum, silver and gold. Phys B: Cond Mat. 2007;394(2):184–187.
  • Bishop PT, Ashfield LJ, Berzins A, Boardman A, Buche V, Cookson J, Gordon RJ, Salcianu C, Sutton PA. Printed gold for electronic applications. Gold Bull. 2010;43(3):181–188.
  • Sun S, Mendes P, Critchley K, Diegoli S, Hanwell M, Evans SD, Leggett GJ, Preece JA, Richardson TH. Fabrication of gold micro-and nanostructures by photolithographic exposure of thiol-stabilized gold nanoparticles. Nano Lett. 2006;6(3):345–350.
  • Coutts MJ, Cortie MB, Ford MJ, McDonagh AM. Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent. J Phys Chem C. 2009;113(4):1325–1328.
  • Bakhishev T, Subramanian V. Investigation of gold nanoparticle inks for low-temperature lead-free packaging technology. J Electr Mater. 2009;38(12):2720–2725.
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–677.
  • Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293–346.
  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277(5329):1078–1081.
  • Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16(19):1685–1706.
  • Lin SY, Wu SH, Chen Ch. A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed. 2006;45(30):4948–4951.
  • Zhang J, Wang L, Pan D, Song S, Boey FY, Zhang H, Fan C. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small. 2008;4(8):1196–1200.
  • Thanh NT, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal Chem. 2002;74(7):1624–1628.
  • Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci. 2003;100(23):13549–13554.
  • Pissuwan D, Valenzuela SM, Killingsworth MC, Xu X, Cortie MB. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res. 2007;9(6):1109–1124.
  • Chen X, Zhu HY, Zhao JC, Zheng ZF, Gao XP. Visible‐light‐driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew Chem. 2008;120(29):5433–5436.
  • Fan Z, Fu PP, Yu H, Ray PC. Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal. 2014;22(1):3–17.
  • Hughes SI, Dasary SSR, Singh AK, Glenn Z, Jamison H, Ray PC, Yu H. Sensitive and selective detection of trivalent chromium using hyper Rayleigh scattering with 5,5′-dithio-bis-(2-nitrobenzoic acid)-modified gold nanoparticles. Sens Actuat B. 2013;178:514–519.
  • Lisha KP, Pradeep T. Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull. 2009;42(2):144–152.
  • Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health, Part C. 2009;27(1):1–35.
  • Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size- and shape-dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem Phys Lett. 2008;463(1–3):145–149.
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc, Chem Commun. 1994;7:801–802.
  • Pong B-K, Elim HI, Chong J-X, Ji W, Trout BL, Lee J-Y. New insights on the nanoparticle growth mechanism in the citrate reduction of gold (III) salt: formation of the Au nanowire intermediate and its nonlinear optical properties. J Phys Chem C. 2007;111(17):6281–6287.
  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B. 2006;110(32):15700–15707.
  • Saraiva SM, Oliveira JFD. Control of particle size in the preparation of colloidal gold. J Dispersion Sci Technol. 2002;23(6):837–844.
  • Turkevich J. Colloidal gold. Part II. Gold Bull. 1985;18(4):125–131.
  • Yu H, Gibbons PC, Kelton KF, Buhro WE. Heterogeneous seeded growth: a potentially general synthesis of monodisperse metallic nanoparticles. J Am Chem Soc. 2001;123(37):9198–9199.
  • Park J, Joo J, Kwon SG, Jang Y, Hyeon T. Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed. 2007;46(25):4630–4660.
  • Niu W, Zhang L, Xu G. Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale. 2013;5(8):3172–3181.
  • Han MY, Quek CH. Photochemical synthesis in formamide and room-temperature coulomb staircase behavior of size-controlled gold nanoparticles. Langmuir. 2000;16(2):362–367.
  • Mallick K, Wang ZL, Pal T. Seed-mediated successive growth of gold particles accomplished by UV irradiation: a photochemical approach for size-controlled synthesis. J Photochem Photobiol, A. 2001;140(1):75–80.
  • Henglein A, Meisel D. Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 1998;14(26):7392–7396.
  • Yu Y-Y, Chang S-S, Lee C-L, Wang CC. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B. 1997;101(34):6661–6664.
  • van der Zande BM, Böhmer MR, Fokkink LG, Schönenberger C. Colloidal dispersions of gold rods: synthesis and optical properties. Langmuir. 2000;16(2):451–458.
  • Okitsu K, Yue A, Tanabe S, Matsumoto H, Yobiko Y. Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold (III) reduction and size of formed gold particles. Langmuir. 2001;17(25):7717–7720.
  • Okitsu K, Ashokkumar M, Grieser F. Sonochemical synthesis of gold nanoparticles: effects of ultrasound frequency. J Phys Chem B. 2005;109(44):20673–20675.
  • Tsuji M, Miyamae N, Hashimoto M, Nishio M, Hikino S, Ishigami N, Tanaka I. Shape and size controlled synthesis of gold nanocrystals using oxidative etching by AuCl4-and Cl-anions in microwave-polyol process. Colloids Surf, A. 2007;302(1–3):587–598.
  • Jiang Y, Zhu Y-J. Microwave-assisted synthesis of nanocrystalline metal sulfides using an ionic liquid. Chem Lett. 2004;33(10):1390–1391.
  • Li D, McCann JT, Gratt M, Xia Y. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania. Chem Phys Lett. 2004;394(4):387–391.
  • Kydd R, Chiang K, Scott J, Amal R. Low energy photosynthesis of gold-titania catalysts. Photochem Photobiol Sci. 2007;6(8):829–832.
  • Soejima T, Tada H, Kawahara T, Ito S. Formation of Au nanoclusters on TiO2 surfaces by a two-step method consisting of Au (III)-complex chemisorption and its photoreduction. Langmuir. 2002;18(11):4191–4194.
  • Carabineiro SAC, Machado BF, Bacsa RR, Serp P, Dražić G, Faria JL, Figueiredo JL. Catalytic performance of Au/ZnO nanocatalysts for CO oxidation. J Catal. 2010;273(2):191–198.
  • Gross E, Horowitz Y, Asscher M. Water as buffer material for gold nanocluster growth. Langmuir. 2005;21(19):8892–8898.
  • Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C. Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc, Chem Comm. 1995;16:1655–1656.
  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc, Chem Comm. 1994;7:801–802.
  • Hostetler MJ, Green SJ, Stokes JJ, Murray RW. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc. 1996;118(17):4212–4213.
  • Templeton AC, Wuelfing WP, Murray RW. Monolayer-protected cluster molecules. Acc Chem Res. 2000;33(1):27–36.
  • Goulet PJG, Lennox RB. New insights into Brust−Schiffrin metal nanoparticle synthesis. J Am Chem Soc. 2010;132(28):9582–9584.
  • Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11:55–75.
  • Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature. 1973;241(105):20–22.
  • Chow MK, Zukoski CF. Gold sol formation mechanisms: role of colloidal stability. J Colloid Interface Sci. 1994;165(1):97–109.
  • Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir. 2001;17(22):6782–6786.
  • Perrault SD, Chan WCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50−200 nm. J Am Chem Soc. 2009;131(47):17042–17043.
  • Sharma V, Park K, Srinivasarao M. Colloidal dispersion of gold nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater Sci Eng R-Rep. 2009;65(1):1–38.
  • Grabar KC, Freeman RG, Hommer MB, Natan MJ. Preparation and characterization of Au colloid monolayers. Anal Chem. 1995;67(4):735–743.
  • Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev. 2010;110(9):5332–5365.
  • Murray CB, Kagan CR, Bawendi MG. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science. 1995;270(5240):1335–1338.
  • Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev. 2001;45(1):47–56.
  • Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J Mate Chem. 2002;12(6):1765–1770.
  • Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc. 2004;126(28):8648–8649.
  • Senapati D, Singh AK, Khan SA, Senapati T, Ray PC. Probing real time gold nanostar formation process using two-photon scattering spectroscopy. Chem Phys Lett. 2011;504(1):46–51.
  • Sohn K, Kim F, Pradel KC, Wu J, Peng Y, Zhou F, Huang J. Construction of evolutionary tree for morphological engineering of nanoparticles. ACS Nano. 2009;3(8):2191–2198.
  • Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc. 2005;127(15):5312–5313.
  • Wu H-L, Chen C-H, Huang MH. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars. Chem Mater. 2008;21(1):110–114.
  • Chen S, Wang ZL, Ballato J, Foulger SH, Carroll DL. Monopod, bipod, tripod, and tetrapod gold nanocrystals. J Am Chem Soc. 2003;125(52):16186–16187.
  • Seo D, Park JH, Jung J, Park SM, Ryu S, Kwak J, Song H. One-dimensional gold nanostructures through directed anisotropic overgrowth from gold decahedrons. J Phys Chem C. 2009;113(9):3449–3454.
  • Giménez MC, Del Pópolo MG, Leiva EPM, Garcıa SG, Salinas DR, Mayer CE, Lorenz WJ. Theoretical considerations of electrochemical phase formation for an ideal Frank-van der Merwe System Ag on Au (111) and Au (100). J Electrochem Soc. 2002;149(4):E109–E116.
  • Caruntu D, Remond Y, Chou NH, Jun M-J, Caruntu G, He J, Goloverda G, O'Connor C, Kolesnichenko V. Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorg Chem. 2002;41(23):6137–6146.
  • Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–3946.
  • Zhang Y, Newton B, Lewis E, Fu PP, Kafoury R, Ray PC, Yu H. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability. Toxicol in Vitro. 2015;29(4):762–768.
  • Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir. 1993;9(12):3408–3413.
  • Leff DV, Brandt L, Heath JR. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir. 1996;12(20):4723–4730.
  • Green M, O’Brien P. A simple one phase preparation of organically capped gold nanocrystals. Chem Commun. 2000;3:183–184.
  • Kamat PV, Barazzouk S, Hotchandani S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew Chem. 2002;114(15):2888–2891.
  • Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, Reich NO. Laser-Activated Gene Silencing via Gold Nanoshell−siRNA Conjugates. ACS Nano. 2009;3(7):2007–2015.
  • Oishi M, Nakaogami J, Ishii T, Nagasaki Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem Lett. 2006;35(9):1046–1047.
  • Yoo CI, Seo D, Chung BH, Chung IS, Song H. A facile one-pot synthesis of hydroxyl-functionalized gold polyhedrons by a surface regulating copolymer. Chem Mater. 2009;21(5):939–944.
  • Templeton AC, Hostetler MJ, Kraft CT, Murray RW. Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc. 1998;120(8):1906–1911.
  • Hostetler MJ, Templeton AC, Murray RW. Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir. 1999;15(11):3782–3789.
  • Banerjee S, Wong SS. Synthesis and characterization of carbon nanotube-nanocrystal heterostructures. Nano Lett. 2002;2(3):195–200.
  • Mandal TK, Fleming MS, Walt DR. Preparation of polymer coated gold nanoparticles by surface-confined living radical polymerization at ambient temperature. Nano Lett. 2002;2(1):3–7.
  • Cheng W, Wang E. Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J Phys Chem B. 2004;108(1):24–26.
  • Chen Y-M, Yu C-J, Cheng T-L, Tseng W-L. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles. Langmuir. 2008;24(7):3654–3660.
  • Allaker RP, Vargas-Reus MA, Ren GG. Nanometals as antimicrobials. In Antimicrobial Polymers: John Wiley & Sons; 2012:327–350.
  • Tom RT, Suryanarayanan V, Reddy PG, Baskaran S, Pradeep T. Ciprofloxacin-protected gold nanoparticles. Langmuir. 2004;20(5):1909–1914.
  • Grace AN, Pandian K. Quinolone antibiotic-capped gold nanoparticles and their antibacterial efficacy against gram positive and gram negative organisms. J Bionanosci. 2007;1(2):96–105.
  • Ahangari A, Salouti M, Heidari Z, Kazemizadeh AR, Safari AA. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Delivery. 2013;20(1):34–39.
  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90(2):619–627.
  • Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8(1):302–306.
  • Gil-Tomás J, Dekker L, Narband N, Parkin IP, Nair SP, Street C, Wilson M. Lethal photosensitisation of bacteria using a tin chlorin e6–glutathione–gold nanoparticle conjugate. J Mater Chem. 2011;21(12):4189–4196.
  • Khan S, Alam F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue–induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomed. 2012;7:3245.
  • Hernández-Sierra JF, Ruiz F, Cruz Pena DC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos Guillén A, Tapia-Pérez H, Martínez Castañón G. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med. 2008;4(3):237–240.
  • Zhang Y, Peng H, Huang W, Zhou Y, Yan D. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J Colloid Interface Sci. 2008;325(2):371–376.
  • Amin RM, Mohamed MB, Ramadan MA, Verwanger T, Krammer B. Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine (London, U K). 2009;4(6):637–643.
  • Azam A, Ahmed F, Arshi N, Chaman M, Naqvi AH. One step synthesis and characterization of gold nanoparticles and their antibacterial activities against E. coli (ATCC 2592 strain). Int J Theor Appl Sci. 2009;1(2):1–4.
  • Arshi N, Ahmed F, Kumar S, Anwar MS, Lu J, Koo BH, Lee CG. Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli(E. coli). Curr Appl Phy. 2011;11(1):S360–S363.
  • Das SK, Das AR, Guha AK. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir. 2009;25(14):8192–8199.
  • Chen W-Y, Lin J-Y, Chen W-J, Luo L, Wei-Guang Diau E, Chen Y-C. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine (London, U K). 2010;5(5):755–764.
  • Moreno-Álvarez SA, Martínez-Castañón GA, Niño-Martínez N, Reyes-Macías JF, Patiño-Marín N, Loyola-Rodríguez JP, Ruiz F. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles. J Nanopart Res. 2010;12(8):2741–2746.
  • Mukha I, Eremenko A, Korchak G, Michienkova А. Antibacterial action and physicochemical properties of stabilized silver and gold nanostructures on the surface of disperse silica. J Water Resource Protection. 2010;2:131–136.
  • Selvaraj V, Grace AN, Alagar M, Hamerton I. Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles. J Biomed Nanotechnol. 2010;6(2):129–137.
  • Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J Am Chem Soc. 2010;132(35):12349–12356.
  • Borah BJ, Yadav A, Dutta DK. Auo-nanoparticles: control size and morphology stabilized by tripodal phosphine based ligands and their antimicrobial activity. J Biomed Nanotechnol. 2011;7(1):152–153.
  • Chatterjee S, Bandyopadhyay A, Sarkar K. Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J Nanobiotechnology. 2011;9:34.
  • Mishra A, Tripathy SK, Yun S-I. Biosynthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol. 2011;11(1):243–248.
  • Mubarak AD, Thajuddin N, Jeganathan K, Gunasekaran M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Coll Surf, B. 2011;85(2):360–365.
  • Naik AJT, Ismail S, Kay C, Wilson M, Parkin IP. Antimicrobial activity of polyurethane embedded with methylene blue, toluidene blue and gold nanoparticles against Staphylococcus aureus; illuminated with white light. Mater Chem Phys. 2011;129(1):446–450.
  • Pal S, Mitra K, Azmi S, Ghosh JK, Chakraborty TK. Towards the synthesis of sugar amino acid containing antimicrobial noncytotoxic CAP conjugates with gold nanoparticles and a mechanistic study of cell disruption. Org Biomol Chem. 2011;9(13):4806–4810.
  • Sreelakshmi C, Datta KKR, Yadav JS, Reddy BVS. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J Nanosci Nanotechnol. 2011;11(8):6995–7000.
  • Badwaik VD, Vangala LM, Pender DS, Willis CB, Aguilar ZP, Gonzalez MS, Paripelly R, Dakshinamurthy R. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett. 2012;7(1):623.
  • Geethalakshmi R, Sarada DV. Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine. 2012;7:5375–5384.
  • Liny P, Divya TK, Malakar B, Nagaraj B, Krishnamurthy NB, Dinesh R. Preparation of gold nanoparticles from Helianthus annuus (sun flower) flowers and evaluation of their antimicrobial activities. Int J Pharma Bio Sci. 2012;3(1):439–446.
  • Nagajyothi PC, Sreekanth TVM, Prasad TNVKV, Lee KD. Harvesting Au nanoparticles from Carthamus tinctorius flower extract and evaluation of their antimicrobial activity. Adv Sci Lett. 2012;5(1):124–130.
  • Sadhasivam S, Shanmugam P, Veerapandian M, Subbiah R, Yun K. Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. BioMetals. 2012;25(2):351–360.
  • Sreekanth TVM, Nagajyothi PC, Lee KD. Biosynthesis of gold nanoparticles and their antimicrobial activity and cytotoxicity. Adv Sci Lett. 2012;6:63–69.
  • Wan W, Yeow JTW. Antibacterial properties of poly (quaternary ammonium) modified gold and titanium dioxide nanoparticles. J Nanosci Nanotechnol. 2012;12(6):4601–4606.
  • Zhou Y, Kong Y, Kundu S, Cirillo JD, Liang H. Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guerin. J Nanobiotechnol. 2012;10:19.
  • Adhikari MD, Goswami S, Panda BR, Chattopadhyay A, Ramesh A. Membrane-directed high bactericidal activity of (gold nanoparticle)-polythiophene composite for niche applications against pathogenic bacteria. Adv Healthcare Mater. 2013;2(4):599–606.
  • Ahmad T, Wani IA, Lone IH, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull. 2013;48(1):12–20.
  • Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Coll Surf B: Biointerfaces. 2013;107:227–234.
  • Alagumuthu G, Kirubha R. Synthesis of gold phyto nanoparticles and their antibacterial efficacy. Int J Chem Pharm Sci (Erode, India). 2013;4(3):42–47.
  • Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Coll Surf B: Biointerfaces. 2013;108:60–65.
  • Basavegowda N, Sobczak-Kupiec A, Malina D, Yathirajan HS, Keerthi VR, Chandrashekar N, Dinkar S, Liny P. Plant mediated synthesis of gold nanoparticles using fruit extracts of ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv Mater Lett. 2013;4(5):332–337.
  • Daima HK, Selvakannan PR, Shukla R, Bhargava SK, Bansal V. Fine-tuning the antimicrobial profile of biocompatible gold nanoparticles by sequential surface functionalization using polyoxometalates and lysine. PLoS One. 2013;8(10):e79676.
  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod. 2013;45:423–429.
  • Lima E, Guerra R, Lara V, Guzman A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J. 2013:7:17.
  • Lokina S, Suresh R, Giribabu K, Stephen A, Lakshmi SR, Narayanan V. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2014;129:484–490.
  • Geethalakshmi R, Sarada DVL. Characterization and antimicrobial activity of gold and silver nanoparticles synthesized using saponin isolated from Trianthema decandra L. Ind Crops Prod. 2013;51:107–115.
  • Ramamurthy CH, Padma M, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf, B. 2013;102:808–815.
  • Wani IA, Ahmad T. Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Coll Surf, B. 2013;101:162–170.
  • Bindhu MR, Umadevi M. Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim Acta A Mol Biomol Spectro. 2014;128:37–45.
  • Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8(10):10682–10686.
  • Lokina S, Suresh R, Giribabu K, Stephen A, Lakshmi SR, Narayanan V. Spectroscopic investigations, antimicrobial, and cytotoxic activity of green synthesized gold nanoparticles. Spectrochim Acta Mol Biomol Spectros. 2014;129:484–490.
  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS. Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol. 2014;166:235–242.
  • Mollick MMR, Bhowmick B, Mondal D, Maity D, Rana D, Dash SK, Chattopadhyay S, Roy S, Sarkar J, Acharya K, Chakrabortye M, Chattopadhyay D. Anticancer (in vitro) and antimicrobial effect of gold nanoparticles synthesized using Abelmoschus esculentus (L.) pulp extract via a green route. RSC Adv. 2014;4(71):37838–37848.
  • Shankar S, Jaiswal L, Aparna RSL, Prasad RGSV. Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett. 2014;137(15):75–78.
  • Sreekanth TVM, Nagajyothi PC, Supraja N, Prasad TNVKV. Evaluation of the antimicrobial activity and cytotoxicity of phytogenic gold nanoparticles. Appl Nanosci. 2014;10:595–602.
  • Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2011;9(11):1035–1052.
  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 2004;15(4):897–900.
  • Kamiar A, Ghotalou R, Valizadeh H. Preparation, physicochemical characterization and performance evaluation of gold nanoparticles in radiotherapy. Adv Pharm Bull. 2013;3(2):425–428.
  • Zeinab NE, Maryam B, Abbas SA, Fatemeh R, Ahmad SR. The combination effects of trivalent gold ions and gold nanoparticles with different antibiotics against resistant Pseudomonas aeruginosa. Gold Bull. 2012;45(2):53–59.
  • Grace NA, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf, A. 2007;297:63–70.
  • Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3(9):1261–1263.
  • Saha B, Bhattacharya J, Mukherjee A, Ghosh AK, Santra CR, Dasgupta AK, Karmakar P. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2007;2(12):614–622.
  • Nagaraj B, Divya TK, Barasa M, Krishnamurthy NB, Dinesh R, Negrila CC, Predoi D. Phytosynthesis of gold nanoparticles using caesalpinia pulcherrima (peacock flower) flower extract and evaluation of their antimicrobial activities. J Optoelectron Adv Mater. 2013;15(3–4):299–304.
  • Naveena BE, Prakash S. Biological synthesis of gold nanoparticles using marine algae graciliria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res. 2003;6(2):179–182.
  • Ramdayal BK. Antibacterial application of polyvinylalcohol-nanogold composite membranes. Colloids Surf, A. 2014;455:174–178.
  • Mitra P, Chakraborty PK, Saha P, Ray P, Basu S. Antibacterial efficacy of acridine derivatives conjugated with gold nanoparticles. Int J Pharm. 2014;473(1–2):636–643.
  • Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D. Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian J Biochem Biophys. 2011;48(5):331–335.
  • Annamalai A, Christina VLP, Sudha D, Kalpana M, Lakshmi PTV. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Coll Surf B: Biointerfaces. 2013;108:60–65.
  • Kantha AD, Kumar AS, Shanmugasundaram H. One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomed. 2013;8:1307–1315.
  • Smitha SL, Gopchandran KG. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Spectrochim Acta Mol Biomol Spectr. 2013;102:114–119.
  • Suresh AK, Pelletier DA, Wang W, Broich ML, Moon JW, Gu B, Allison DP, Joy DC, Phelps TJ, Doktycz MJ. Biofabrication of discrete spherical gold nanoparticles using the metal-reducing bacterium Shewanella oneidensis. Acta Biomater. 2011;7(5):2148–2152.
  • Badwaik VD, Vangala LM, Pender DS, Willis CB, Aguilar ZP, Gonzalez MS, Paripelly R, Dakshinamurthy R. Size-dependent antimicrobial properties of sugar-encapsulated gold nanoparticles synthesized by a green method. Nanoscale Res Lett. 2012;7(1): 623/621–623/611, 611 pp.
  • El-Batal AI, Hashem AA, Abdelbaky NM. Gamma radiation mediated green synthesis of gold nanoparticles using fermented soybean-garlic aqueous extract and their antimicrobial activity. SpringerPlus. 2013;2:129.
  • Mahitha B, Deva Prasad Raju B, Madhavi T, Durga maha lakshmi CN, Sushma JN. Evaluation of antibacterial efficacy of phyto fabricated gold nanoparticles using bacope monniera plant extract. Ind J Adv Chem Sci. 2013;1(2):94–98.
  • Lima E, Guerra R, Lara V, Guzman A. Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J. 2013;7:11.
  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed: Nanotech, Biol Med. 2007;3(2):168–171.
  • Pornpattananangkul D, Zhang L, Olson S, Aryal S, Obonyo M, Vecchio K, Huang C-M, Zhang L. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011;133(11):4132–4139.
  • Dasari TPS, Deng H, McShan D, Yu H. Nanosilver-based antibacterial agents for food safety. In: Ray PC (Ed.), Food Poisoning: Outbreaks, Bacterial Sources and Adverse Health Effects. New York: Nova Science Publishers; 2014:35–62.
  • Nirmala GA, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Coll Surf A: Physicochem Eng Aspects. 2007;297(1):63–70.
  • Chamundeeswari M, Sobhana SS, Jacob JP, Kumar MG, Devi MP, Sastry TP, Mandal AB. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol Appl Biochem. 2010;55(1):29–35.
  • Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20(32):6789–6798.
  • Park S, Chibli H, Wong J, Nadeau JL. Antimicrobial activity and cellular toxicity of nanoparticle-polymyxin B conjugates. Nanotechnol. 2011;22(18):185101.
  • Zawrah MF, El-Moez SIA. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J. 2011;8(4):37–44.
  • Adhikari MD, Das G, Ramesh A. Retention of nisin activity at elevated pH in an organic acid complex and gold nanoparticle composite. Chem Commun (Camb). 2012;48(71):8928–8930.
  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–2774.
  • Rastogi L, Kora AJ. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Mater Sci Eng, C. 2012;32(6):1571–1577.
  • Shah MR, Ali S, Ateeq M, Perveen S, Ahmed S, Bertino MF, Ali M. Morphological analysis of the antimicrobial action of silver and gold nanoparticles stabilized with ceftriaxone on Escherichia coli using atomic force microscopy. New J Chem. 2014;38(11):5633–5640.
  • Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mat Chem. 2010;20(32):6789–6798.
  • Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol. 2011;46(2):1119–1127.
  • Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22(1):64–75.
  • McShan D, Ray PC, Yu H: Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116–127.
  • McShan D, Zhang Y, Deng H, Ray PC, Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Environ Sci Health C: Environ Carcinog Ecotoxicol Revs. 2015;33(3).
  • Zhang W, Li Y, Niu J, Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013;29(15):4647–4651.
  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33(7):2327–2333.
  • Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett. 2009;4(8):794–801.
  • Elsome AM, Hamilton-Mille JMT, Bmmfitt W, Noble WC. Antimicrobial activities in vitro and in vivo of transition element complexes containing gold(I) and osmium(VI). J Antimicr Chemther. 1996;37:911–918.
  • Wenzel M, Bigaeva E, Richard P, Le Gendre P, Picquet M, Casini A, Bodio E. New heteronuclear gold(I)–platinum(II) complexes with cytotoxic properties: are two metals better than one? J Inorg Biochem. 2014;141:10–16.
  • Glisic BD, Djuran MI. Gold complexes as antimicrobial agents: an overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014;43(16):5950–5969.
  • Fernándeza GA, Vela Gurovica MS, Oliverab NL, Chopaa AB, Silbestri GF. Antibacterial properties of water-soluble gold(I) N-heterocyclic carbene complexes. J Inorg Biochem. 2014;135:54–57.
  • Novellia F, Recinea M, Sparatorea F, Julianob C. Gold(I) complexes as antimicrobial agents. II Farmaco. 1999;54(4):232–236.
  • Nomiya K, Yamamoto S, Noguchi R, Yokoyama H, Kasuga CN, Ohyama K, Kato C. Ligand-exchangeability of 2-coordinate phosphinegold(I) complexes with AuSP and AuNP cores showing selective antimicrobial activities against Gram-positive bacteria. Crystal structures of [Au(2-Hmpa)(PPh3)] and [Au(6-Hmna)(PPh3)] (2-H2mpa=2-mercaptopropionic acid, 6-H2mna=6-mercaptonicotinic acid). J Inorg Biochem. 2003;95(2–3):2008–2220.
  • Ozdemir İ, Temelli N, Günal S, Demir S. Gold(I) complexes of N-heterocyclic carbene ligands containing benzimidazole: synthesis and antimicrobial activity. Molecules. 2010;15:2203–2210.
  • Elie Benelita T, Levine C, Ubarretxena-Belandia I, Varela-Ramírez A, Aguilera RJ, Ovalle R, Contel M. Water-soluble (phosphane)gold(I) complexes—applications as recyclable catalysts in a three-component coupling reaction and as antimicrobial and anticancer agents. Eur J Inorg Chem. 2009;2009(23):3421–3430.
  • Kumari PYASJ, Chandra SJ, Rao SB, Sunandamma Y. Synthesis, characterization and antibacterial activity of Alloxanthiosemicarbazone Au(III) complexes. J Curr Pharm Res. 2012;10(1):28–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.