Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 34, 2016 - Issue 2
347
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The mycotoxin definition reconsidered towards fungal cyclic depsipeptides

, , , &

References

  • Desjardins AE, Proctor RH. Molecular biology of Fusarium mycotoxins. Int J Food Microbiol. 2007;119:47–50.
  • Jestoi M, Rokka M, Yli-Mattila T, Parikka P, Rizzo A, Peltonen K. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in Finnish grain samples. Food Addit Contam Part A. 2004;21:794–802.
  • Devreese M, Broekaert N, De Mil T, Fraeyman S, De Backer P, Croubels S. Pilot toxicokinetic study and absolute oral bioavailability of the Fusarium mycotoxin enniatin B1 in pigs. Food Chem Toxicol. 2014;63:161–165.
  • Blount WP. Turkey “X” disease. Turkeys. 1961;9:52–61.
  • Forgacs J, Carll WT. Preliminary mycotoxic studies on hemorrhagic disease in poultry. Vet Med. 1955;50:172–177.
  • Thomas NJ, Hunter DB, Atkinson CT, eds. Infectious Diseases of Wild Birds, Hoboken, Hoboken, NJ: Wiley-Blackwell; 2007.
  • Food and Agriculture Organization of the United Nations, 2015, Food safety and quality: Mycotoxins. http://www.fao.org/food/food-safety-quality/a-z-index/mycotoxins/en/.
  • Berthiller F, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J. Masked mycotoxins: A review. Mol Nutr Food Res. 2013;57:165–186.
  • Pitt JJ. Fungal ecology and the occurrence of mycotoxins. In: H Njapau, S Trujillo, HP van Egmond, DL Park, eds. Mycotoxins and Phycotoxins—Advances in Determination, Toxicology and Exposure Management, Wageningen, The Netherlands: Wageningen Academic Publishers; 2006:33–42.
  • Frisvad JC. Rationale for a polyphasic approach in the identification of mycotoxigenic fungi. In: S De Saeger, ed. Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed, Woodhead Publishing, Sawston, UK; 2011:279–297.
  • Bhatnagar D, Payne GA, Cleveland TE, Robens JF. Mycotoxins—Current issues in USA. In: Barug D, van Egmond H, López-García R, van Osenbruggen R, Visconti A, eds. Meeting the Mycotoxin Menace, Wageningen, The Netherlands: Wageningen Academic Publishers; 2004:17–48.
  • Raghavender CR, Reddy BN. Human and animal disease outbreaks in India due to mycotoxins other than aflatoxins. World Mycotoxin J. 2009;2:23–30.
  • European Food Safety Authority, 2015, Mycotoxins. http://www.efsa.europa.eu/en/topics/topic/mycotoxins.htm.
  • Devreese M, De Baere S, De Backer P, Croubels S. Quantitative determination of the Fusarium mycotoxins beauvericin, enniatin A, A1, B and B1 in pig plasma using high performance liquid chromatography–tandem mass spectrometry. Talanta. 2013;106:212–219.
  • US Food and Drug Administration Office of Regulatory Affairs, Office of Regulatory Science, 2015, ORA Laboratory Manual, Section 7: Mycotoxin analysis. http://www.fda.gov/downloads/scienceresearch/fieldscience/laboratorymanual/ucm092245.pdf.
  • Yazar S, Omurtag GZ. Fumonisins, trichothecenes and zearalenone in cereals. Int J Mol Sci. 2008;9:2062–2090.
  • Varga E, Glauner T, Berthiller F, Krska R, Schuhmacher R, Sulyok M. Development and validation of a (semi-) quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal Bioanal Chem. 2013;405:5087–5104.
  • Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516.
  • European Mycotoxins Awareness Network, 2015. http://www.mycotoxins.org/node/36.
  • Gravesen S, Frisvad JC, Samson RA. Microfungi, Munksgaard, Copenhagen, Denmark; 1994.
  • Whitlow LW, Hagler WM, 2015, Mycotoxins in dairy cattle: Occurrence, toxicity, prevention and treatment. https://www.msu.edu/∼mdr/mycotoxins.pdf.
  • Jarvis BB, Miller JD. Mycotoxins as harmful indoor air contaminants. Appl Microbiol Biotechnol. 2005;66:367–372.
  • Milicevic DR, Skrinjar M, Baltic T. Real and perceived risks for mycotoxin contamination in foods and feeds: Challenges for food safety control. Toxins. 2010;2:572–592.
  • Richard JL. Some major mycotoxins and their mycotoxicoses—An overview. Int J Food Microbiol. 2007;119:3–10.
  • Barrett JR. Mycotoxins: Of molds and maladies. Environ Health Perspect. 2000;108:A20–A23.
  • Jestoi M. Emerging Fusarium mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin—Aa review. Crit Rev Food Sci Nutr. 2008;48:21–49.
  • Kolf-Clauw M, Sassahara M, Lucioli J, Rubira-Gerez J, Alassane-Kpembi I, Lyazhri F, Borin C, Oswald IP. The emerging mycotoxin, enniatin B1, down-modulates the gastrointestinal toxicity of T-2 toxin in vitro on intestinal epithelial cells and ex vivo on intestinal explants. Arch Toxicol. 2013;87:2233–2241.
  • European Food Safety Authority, 2007, Definition and description of “emerging risks” within the EFSA's mandate, EFSA/SC/415 Final, Parma. http://www.efsa.europa.eu/en/scdocs/doc/escoemriskdefinition.pdf.
  • Capriotti AL, Caruso G, Cavaliere C, Foglia P, Samperi R, Lagana A. Multiclass mycotoxin analysis in food, environmental and biological matrices, with chromatography/mass spectrometry. Mass Spectr Rev. 2012;31:466–503.
  • Boonen J, Malysheva SV, Taevernier L, Di Mavungu JD, De Saeger S, De Spiegeleer B. Human skin penetration of selected model mycotoxins. Toxicol. 2012;301:21–32.
  • Nielsen KF, Smedsgaard J. Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography-UV-mass spectrometry methodology. J Chromatogr A. 2003;1002:111–136.
  • Oh DC, Jensen PR, Fenical W. Zygosporamide, a cytotoxic cyclic depsipeptide from the marine-derived fungus Zygosporium masonii. Tetrahedron Lett. 2006;47:8625–8628.
  • Wang Y, Zhang F, Zhang Y, Liu JO, Ma D. Synthesis and antitumor activity of cyclodepsipeptide zygosporamide and its analogues. Bioorg Med Chem Lett. 2008;18:4385–4387.
  • Geiger M, Guitton Y, Vansteelandt M, Kerzaon I, Blanchet E, du Pont TR, Frisvad JC, Hess P, Pouchus YF, Grovel O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers. Lett Appl Microbiol. 2013;57:385–392.
  • Wannemacher RW, Wiener SL. Trichothecene mycotoxins. In: FR Sidell, ET Takafuji, DR Franz, eds. Medical Aspects of Chemical and Biological Warfare, Phoenix, Arizona: TMM Publications; 1997:655–676.
  • Kim EE, Baker CT, Dwyer MD, Murcko MA, Rao BG, Tung RD, Navia MA. Crystal-structure of HIV-1 protease in complex with VW-478, a potent and orally bioavailable inhibitor of the enzyme. J Am Chem Soc. 1995;117:1881–1882.
  • Thompson LA, Elman JA. Synthesis and applications of small molecule libraries. Chem Rev. 1996;96:555–600.
  • Leeson PD, Springthorpe B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discovery. 2007;6:881–890.
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliver Rev. 1997;23:3–25.
  • Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45:2615–2623.
  • Taevernier L, Veryser L, Roche N, Peremans K, Burvenich C, Delesalle C, De Spiegeleer B. Human skin permeation of emerging mycotoxins (beauvericin and enniatins). J Exposure Sci Environ Epidemiol. 2015; doi:10.1038/jes.2015.10.
  • Meca G, Mañes J, Font G, Ruiz M-J. Study of the potential toxicity of commercial crispy breads by evaluation of bioaccessibility and bioavailability of minor Fusarium mycotoxins. Food and Chem Toxicol. 2012;50:288–294.
  • Jirakkakul J, Punya J, Pongpattanakitshote S, Paungmoung P, Vorapreeda N, Tachaleat A, Klomnara C, Tanticharoen M, Cheedvadhanarak S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiol. 2008;154:995–1006.
  • Yu D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zhan J. Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomyces cerevisiae. Metabol Engineer. 2013;18:60–68.
  • Shier WT. The fumonisin paradox: A review of research on oral bioavailability of fumonisin B1, a mycotoxin produced by Fusarium moniliforme. J Toxicol. 2000;19:161–187.
  • Jover R, Ponsoda X, Castell JV, Gomez-Lechon MJ. Evaluation of the cytotoxicity of ten chemicals on human cultured hepatocytes: Predictability of human toxicity and comparison with rodent cell culture systems. Toxicol In Vitro. 1992;6:47–52.
  • Ruiz MJ, Macakova P, Juan-Garcia A, Font G. Cytotoxic effects of mycotoxin combinations in mammalian kidney cells. Food Chem Toxicol. 2011;49:2718–2724.
  • Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel OP. New insights into mycotoxin mixtures: The toxicity of low doses of type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol. 2013;272:191–198.
  • Prosperini A, Font G, Ruiz MJ. Interaction effects of Fusarium enniatins (A, A1, B and B1) combinations on in vitro cytotoxicity of Caco-2 cells. Toxicol In Vitro. 2014;28:88–94.
  • Grenier B, Oswald IP. Mycotoxin co-contamination of food and feed: Meta-analysis of publications describing toxicological interactions. World Mycotoxin J. 2011;4:285–313.
  • Harrer H, Laviad EL, Humpf HU, Futerman AH. Identification of N-acyl-fumonisin B1 as new cytotoxic metabolites of fumonisin mycotoxins. Mol Nutr Food Res. 2013;57:516–522.
  • Kayalou S, Ndossi D, Frizzell C, Groseth PK, Connolly L, Sorlie M, Verhaegen S, Ropstad E. An investigation of the endocrine disrupting potential of enniatin B using in vitro bioassays. Toxicol Lett. 2015;233:84–94.
  • Ndossi DG, Frizzell C, Tremoen NH, Faeste CK, Verhaegen S, Dahl E, Eriksen GS, Sorlie M, Connolly L, Ropstad E. An in vitro investigation of endocrine disrupting effects of trichothecenes deoxynivalenol (DON), T-2 and HT-2 toxins. Toxicol Lett. 2012;214:268–278.
  • Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. Multi- and Megavariate Data Analysis: Part I—Basic Principles and Applications, Sweden: Umetrics AB, Umea; 2006.
  • Russell DW, Ward V. Abstract 1st Meeting Fed. European Biochem. Soc. London, Communication. 1964;A97.
  • Herrmann M, Zocher R, Haese A. Enniatin production by Fusarium strains and its effect on potato tuber tissue. Appl Environ Mircrobiol. 1996;62:393–398.
  • Ivanova L, Skjerve E, Eriksen GS, Uhlig S. Cytotoxicity of enniatins A, A1, B, B1, B2 and B3 from Fusarium avenaceum. Toxicon. 2006;47:868–876.
  • Isaka M, Palasarn S, Supothina S, Komwijit S, Luangsa-ard JJ. Bioactive compounds from the scale insect pathogenic fungus Conoideocrella tenuis BCC 18627. J Nat Prod. 2011;74:782–789.
  • Lang G, Mitova MU, Ellis G, van der Sar S, Phipps RK, Blunt JW, Cummings NJ, Cole ALJ, Munro MHG. Bioactivity profiling using HPLC/microtiter-plate analysis: Application to a New Zealand marine alga-derived fungus, Gliocladium sp. J Nat Prod. 2006;69:621–624.
  • Ferrer E, Juan-García A, Font G, Ruiz MJ. Reactive oxygen species induced by beauvericin, patulin and zearalenone in CHO-K1 cells. Toxicol In Vitro. 2009;23:1504–1509.
  • Fukuda T, Arai M, Yamaguchi Y, Masuma R, Tomoda H, Omura S. New beauvericins, potentiators of antifungal miconazole activity, produced by Beauveria sp. FKI-1366—I. Taxonomy, Fermentation, Isolation and Biological Properties. J Antibiotics. 2004;57:110–116.
  • Prosperini A, Meca G, Font G, Ruiz MJ. Study of the cytotoxic activity of beauvericin and fusaproliferin and bioavailability in vitro on Caco-2 cells. Food Chem Toxicol. 2012;50:2356–2361.
  • Sifou A, Meca G, Serrano AB, Mahnine N, Abidi AE, Mañes J, Azzouzi ME, Zinedine A. First report on the presence of emerging Fusarium mycotoxins enniatins (A, A1, B, B1), beauvericin and fusaproliferin in rice on the Moroccan retail markets. Food Control. 2011;22:1826–1830.
  • Song HH, Lee HS, Lee GP, Ha SD, Lee C. Structural analysis of enniatin H, I, and MK1688 and beauvericin by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their production by Fusarium oxysporum KFCC 11363P. Food Addit Contam Part A. 2009;26:518–526.
  • Wang Q, Xu L. Beauvericin, a bioactive compound produced by fungi: A short review. Molecules. 2012;17:2367–2377.
  • Jenkins KM, Renner MK, Jensen PR, Fenical W. Exumolides A and B: Antimicroalgal cyclic depsipeptides produced by a marine fungus of the genus Scytalidium. Tetrahedron Lett. 1998;39:2463–2466.
  • Huang H, She Z, Lin Y, Vrijmoed LLP, Lin W. Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod. 2007;70:1696–1699.
  • Kim MY, Sohn JH, Ahn JS, Oh H. Alternaramide, a cyclic depsipeptide from the marine-derived fungus Alternaria sp. SF-5016. J Nat Prod. 2009;72:2065–2068.
  • Jegorov A, Hajduch M, Sulc M, Havlicek V. Nonribosomal cyclic peptides: Specific markers of fungal infections. J Mass Spectrom. 2006;41:563–576.
  • Kuzma M, Jegorov A, Kacer P, Havlicek V. Sequencing of new beauverolides by high performance liquid chromatography and mass spectrometry. J Mass Spectrom. 2001;36:1108–1115.
  • Onstad DW, Fuxa JR, Humber RA, Oestergaard J, Shapirollan DI, Gouli VV, Anderson RS, Andreadus TG, Lacey LA, 2006, An abridged glossary of terms used in invertebrate pathology, 3rd ed. Society for Invertebrate Pathology. http://www.sipweb.org/resources/glossary.html.
  • Sarek J, Dzubak P, Klinotova E, Noskova V, Krecek V, Korinkova G, Thomson JO, Janostakova A, Wang S, Parsons S, Fischer PM, Zhelev N, Hajduch M. New lupane derived compounds with pro-apoptotic activity in cancer cells: synthesis and structure–activity relationships. J Med Chem. 2003;46:5402–5415.
  • Boot CM, Amagata T, Tenneya K, Comptona JE, Pietraskiewicz H, Valeriote FA, Crews P. Four classes of structurally unusual peptides from two marine-derived fungi: Structures and bioactivities. Tetrahedron. 2007;63:9903–9914.
  • Che Y, Swenson DC, Gloer JB, Koster B, Malloch D. Pseudodestruxins A and B: New cyclic depsipeptides from the Coprophilous fungus Nigrosabulum globosum. J Nat Prod. 2001;64:555–558.
  • Dornetshuber-Fleiss R, Heffeter P, Mohr T, Hazemi P, Kryeziu K, Seger C, Berger W, Lemmens-Gruber R. Destruxins: Fungal-derived cyclohexadepsipeptides with multifaceted anticancer and antiangiogenic activities. Biochem Pharmacol. 2013;86:361–377.
  • Dumas C, Matha V, Quiot JM, Vey A. Effects of destruxins, cyclic depsipeptide mycotoxins, on calcium balance and phosphorylation of intracellular proteins in lepidopteran cell lines. Comp Biochem Physiol Part C: Pharmacol Toxicol Endocrinol. 1996;114:213–219.
  • Engstrom GW, DeLance JV, Richard JL, Baetz AL. Purification and characterization of roseotoxin B, a toxic cyclodepsipeptide from Trichothecium roseum. J Agric Food Chem 1975;23:244–253.
  • Kawazu K, Murakami T, Ono Y, Kanzaki H, Kobayashi A, Mikawa T, Yoshikawa N. Isolation and characterization of two novel nematicidal depsipeptides from an imperfect fungus, strain D1084. Biosci Biotechnol Biochem. 1993;57:98–101.
  • Lira SP, Vita-Marques AM, Seleghum MHR, Bugni TS, LaBarbera DV, Sette LD, Sponchiado SRP, Ireland CM, Berlinck RGS. New destruxins from the marine-derived fungus Beauveria felina. J Antibiotics 2006;59:553–563.
  • Springer JP, Cole RJ, Dorner JW, Cox RH, Richard JL, Barnes CL, van der Helm D. Structure and conformation of roseotoxin B. J Am Chem Soc. 1984;106:2388–2392.
  • Sree KS Padmaja V, Murthy YL. Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest Manage Sci. 2008;64:119–125.
  • Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC. Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway. Chem Biol 2008;15:527–532.
  • Ghosh S, Pradhan TK. The first total synthesis of emericellamide A. Tetrahedron Lett. 2008;49:3697–3700.
  • Oh DC, Kauffman CA, Jensen PR, Fenical W. Induced production of emericellamides A and B from the marine-derived fungus Emericella sp in competing co-culture. J Nat Prod. 2007;70:515–520.
  • Amagata T, Morinaka BI, Amagata A, Tenney K, Valeriote FA, Lobkovsky E, Clardy J, Crews PJ. A chemical study of cyclic depsipeptides produced by a sponge-derived fungus. J Nat Prod. 2006;69:1560–1565.
  • Sy-Cordero AA, Graf TN, Adcock AF, Kroll DJ, Shen Q, Swanson SM, Wani MC, Pearce CJ, Oberlies NH. Cyclodepsipeptides, sesquiterpenoids, and other cytotoxic metabolites from the filamentous fungus Trichothecium sp (MSX 51320). J Nat Prod. 2011;74:2137–2142.
  • Isaka M, Palasarn S, Sriklung K, Kocharin K. Cyclohexadepsipeptides from the insect pathogenic fungus Hirsutella nivea BCC 2594. J Nat Prod. 2005;68:1680–1682.
  • Vongvanich N, Kittakoop P, Isaka M, Trakulnaleamsai S, Vimuttipong S, Tanticharoen M, Thebtaranonth Y. Hirsutellide A, a new antimycobacterial cyclohexadepsipeptide from the entomopathogenic fungus Hirsutella kobayasii. J Nat Prod. 2002;65:1346–1348.
  • Hamano K, Kinoshita M, Furuya K, Miyamotoll M, Takamatsu Y, Hemmi A, Tanzawa K. Leualacin, a novel calcium blocker from Hapsidospora irregularis. 1. Taxonomy, fermentation, isolation, physicochemical and biological properties. J Antibiotics. 1992;45:899–905.
  • Bringmann G, Lang G, Steffens S, Schaumann K. Petrosifungins A and B, novel cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum. J Nat Prod. 2004;67:311–315.
  • Moussa MM, Le Quesne PW. Total synthesis of the cyclodepsipeptide ionophore pithomycolide. Tetrahedron Lett. 1996;37:6479–6482.
  • Belofsky GN, Jensen PR, Fenical W. Sansalvamide: A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett. 1999;40:2913–2916.
  • Cueto M, Jensen PR, Fenical W. N-Methylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus Fusarium. Phytochem. 2000;55:223–226.
  • Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenical W, Bushman F. Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Molec Pharmacol.1999;55:1049–1053.
  • Suzuki A, Kanaoka M, Isogai A, Murakoshi S, Ichinoe M, Tamura, S. Bassianolide, a new insecticidal cyclodepsipeptide from Beauveria bassiana and Verticillium lecanii. Tetrahedron Lett 1977;25:2167–2170.
  • Yun D, Xu F, Zi J, Wang S, Gage D, Zeng J, Zahn J. Engineered production of fungal anticancer cyclooligomer depsipeptides in Saccharomy cescerevisiae. Metabol Engin. 2013;18:60–68.
  • Dornetshuber R, Kamyar MR, Rawnduzi P, Baburin I, Kouri K, Pilz E, Hornbogen T, Zocher R, Berder W, Lemmens-Gruber R. Effects of the anthelmintic drug PF1022A on mammalian tissue and cells. Biochem Pharmacol. 2009;77:1437–1444.
  • Sasaki T, Takagi M, Yaguchi T, Miyadoh S, Okada T, Koyama M. A new anthelmintic cyclodepsipeptide, PF1022A. J Antibiotics. 1992;45:692–697.
  • Nihei K, Itoh H, Hashimoto K, Miyairi K, Okuno T. Antifungal cyclodepsipeptides, W493 A and B, from Fusarium sp.: isolation and structural determination. Biosci Biotechnol Biochem. 1998;62:858–863.
  • Abdel-Lateff A, Elkhayat ES, Fouad MA, Okino T. Aureobasidin, new antifouling metabolite from marine-derived fungus Aureobasidium sp. Nat Prod Comm. 2009;4:389–394.
  • Detwiller JE, Lubell WD. Progress in a structure activity study of the aureobasidin peptide antibiotics. Abstract (P185) 18th American Peptide Symposium, Biopolymers 2003;71:344–345.
  • Sonda S, Sala G, Ghidoni R, Hemphill A, Pieters J. Inhibitory effect of aureobasidin A on Toxoplasma gondii. Antimicrob Agents Chemother. 2005;49:1794–1801.
  • Tan HW, Tay ST. The inhibitory effects of aureobasidin A on Candida planktonic and biofilm cells: Inhibitory effects of aureobasidin A on Candida. Mycoses. 2013;56:150–156.
  • Tanaka AK, Valero VB, Takahashi HK, Straus AH. Inhibition of Leishmania (Leishmania) amazonensis growth and infectivity by aureobasidin A. J Antimicrob Chemother. 2007;59:487–492.
  • Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagame Y. New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. J Antibiotics. 2001;54:17–21.
  • Nakadate S, Nozawa K, Sato H, Horie H, Fujii Y, Nagai M, Hosoe T, Kawai K, Yaguchi T. Antifungal cyclic depsipeptide, eujavanicin A, isolated from Eupenicillium javanicum. J Nat Prod 2008;71:1640–1642.
  • Ratnayake R, Fremlin LJ, Lacey E, Gill JH, Capon RJ. Acremolides A-D, lipodepsipeptides from an Australian marine-derived fungus, Acremonium sp. J Nat Prod. 2008;71:403–408.
  • McCorkindale NJ, Baxter RL. Brevigellin, a benzoylated cyclodepsipeptide from Penicillium brevicompactum. Tetrahedron. 1981;37:1795–1801.
  • Sato T, Ishiyama D, Honda R, Senda H, Konno H, Tokumasu S, Kanazawa S. Glomosporin, a novel antifungal cyclic depsipeptide from Glomospora sp. I. Production, isolation, physico-chemical properties and biological activities. J Antibiotics. 2000;53:597–602.
  • Guo YX, Liu QH, Ng TB, Wang HX. Isarfelin, a peptide with antifungal and insecticidal activities from Isaria felina. Peptides. 2005;26:2384–2391.
  • Langenfeld A, Blond A, Gueye S, Herson P, Nay B, Dupont J, Prado S. Insecticidal cyclodepsipeptides from Beauveria felina. J Nat Prod. 2011;74:825–830.
  • Ravindra G, Ranganayaki RS, Raghothama S, Srinivasan MC, Gilardi RD, Karle IL, Balaram P. Two novel hexadepsipeptides with several modified amino acid residues isolated from the fungus Isaria. Chem Biodiversity. 2004;1:489–504.
  • Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P. Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod. 2007;70:715–729.
  • Yu Z, Lang G, Kajahn I, Schmaljohann R, Imhoff JF. Scopularides A and B, cyclodepsipeptides from a marine sponge-derived fungus, Scopulariopsis brevicaulis. J Nat Prod. 2008;71:1052–1054.
  • Gillis HA, Russell DW, Taylor A, Walter JA. Isolation and structure of sporidesmolide V from cultures of Pithomyces chartarum. Can J Chem. 1990;68:19–21.
  • Russell DW. Sporidesmolide-I, a metabolic product of sporidesmium bakeri SYD. Biochim Biophys Acta. 1960;45:411–412.
  • Russell DW. Depsipeptides of Pithomyces chartarum—Structure of sporidesmolide I. J Chem Soc. 1962;753–761.
  • Morino T, Masuda A, Yamada M, Nishimoto M, Nishikiori T, Saito S. Stevastelins, novel immunosuppressants produced by Penicillium. J Antibiotics. 1994;47:1341–1343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.