Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 35, 2017 - Issue 3
470
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Evaluation of chemical mutagenicity using next generation sequencing: A review

, &

References

  • Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015;349:1483–1489.
  • Sokolenko AP, Volkov NM, Preobrazhenskaya EV, et al. Evidence for a pathogenic role of BRCA1 L1705P and W1837X germ-line mutations. Mol Biol Rep. 2016;43:335–338.
  • Catenacci DV, Amico AL, Nielsen SM, et al. Tumor genome analysis includes germline genome: are we ready for surprises? Int J Cancer. 2015;136:1559–1567.
  • Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277:1805–1807.
  • Whitcomb DC, Gorry MC, Preston RA, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet. 1996;14:141–145.
  • Miquel J. An update on the oxygen stress-mitochondrial mutation theory of aging: genetic and evolutionary implications. Exp Gerontol. 1998;33:113–126.
  • Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A. 2002;99:3586–3590.
  • Roach JC, Glusman G, Smit AFA, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010;328:636–639.
  • He Z, Kosinska W, Zhao ZL, Wu XR, Guttenplan JB. Tissue-specific mutagenesis by N-butyl-N-(4-hydroxybutyl)nitrosamine as the basis for urothelial carcinogenesis. Mutat Res. 2012;742:92–95.
  • Meier B, Cooke SL, Weiss J, et al. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res. 2014;24:1624–1636.
  • Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008;26:1135–1145.
  • Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet. 2010;11:31–46.
  • Ceccaroli C, Pulliero A, Geretto M, Izzotti A. Molecular fingerprints of environmental carcinogens in human cancer. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2015;33:188–228.
  • Desai AN, Jere A. Next-generation sequencing: ready for the clinics? Clin Genet. 2012;81:503–510.
  • Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet. 2014;15:56–62.
  • Beal MA, Glenn TC, Somers CM. Whole genome sequencing for quantifying germline mutation frequency in humans and model species: cautious optimism. Mutat Res. 2012;750:96–106.
  • Campbell CD, Chong JX, Malig M, et al. Estimating the human mutation rate using autozygosity in a founder population. Nat Genet. 2012;44:1277–1281.
  • Keightley PD. Rates and fitness consequences of new mutations in humans. Genetics. 2012;190:295–304.
  • Tuna M, Amos CI. Genomic sequencing in cancer. Cancer Lett. 2013;340:161–170.
  • Mertes F, ElSharawy A, Sauer S, et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief Funct Genomics. 2011;10:374–386.
  • Mamanova L, Coffey AJ, Scott CE, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010;7:111–118.
  • Masumura K, Toyoda-Hokaiwado N, Ukai A, Gondo Y, Honma M, Nohmi T. Estimation of the frequency of inherited germline mutations by whole exome sequencing in ethyl nitrosourea-treated and untreated gpt delta mice. Genes Environ. 2016;38:10.
  • Masumura K, Toyoda-Hokaiwado N, Ukai A, Gondo Y, Honma M, Nohmi T. Dose-dependent de novo germline mutations detected by whole-exome sequencing in progeny of ENU-treated male gpt delta mice. Mutat Res. 2016;810:30–39.
  • Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is WGS the better WES? Hum Genet. 2016;135:359–362.
  • Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17:175–188.
  • Gundry M, Li W, Maqbool SB, Vijg J. Direct, genome-wide assessment of DNA mutations in single cells. Nucleic Acids Res. 2012;40:2032–2040.
  • Szikriszt B, Poti A, Pipek O, et al. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome Biol. 2016;17:99.
  • Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. Detection of ultra-rare mutations by next-generation sequencing. Proc Natl Acad Sci U S A. 2012;109:14508–14513.
  • Hoang ML, Kinde I, Tomasetti C, et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc Natl Acad Sci U S A. 2016;113:9846–9851.
  • Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. Proc Natl Acad Sci U S A. 2013;110:19872–19877.
  • Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7:e30619.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760.
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359.
  • Lou DI, Hussmann JA, Mcbee RM, Acevedo A, Andino R, Press WH, Sawyer SL. High-throughput DNA sequencing errors are reduced by orders of magnitude using circle sequencing. P Natl Acad Sci USA. 2013;110:19872–19877.
  • Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc. 2014;9:2586–2606.
  • Ratan A, Olson TL, Loughran TP, Jr., Miller W. Identification of indels in next-generation sequencing data. BMC Bioinformatics. 2015;16:42.
  • Hwang S, Kim E, Lee I, Marcotte EM. Systematic comparison of variant calling pipelines using gold standard personal exome variants. Sci Rep-Uk. 2015;5.
  • Cornish A, Guda C. A comparison of variant calling pipelines using genome in a bottle as a reference. Biomed Res Int. 2015; DOI:10.1155/2015/456479.
  • Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25:2865–2871.
  • Rimmer A, Phan H, Mathieson I, et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet. 2014;46:912–918.
  • Zhao M, Wang QG, Wang Q, Jia PL, Zhao ZM. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. Bmc Bioinformatics. 2013;14.
  • DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–+.
  • Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 10 1–33.
  • Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10:1556–1566.
  • Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
  • Paila U, Chapman BA, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput Biol. 2013;9:e1003153.
  • Taevernier L, Wynendaele E, De Vreese L, Burvenich C, De Spiegeleer B. The mycotoxin definition reconsidered towards fungal cyclic depsipeptides. J Environ Sci Heal C. 2016;34:114–135.
  • Smela ME, Currier SS, Bailey EA, Essigmann JM. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis. Carcinogenesis. 2001;22:535–545.
  • Li Z, Qin T, Wang K, et al. Integrated microRNA, mRNA, and protein expression profiling reveals microRNA regulatory networks in rat kidney treated with a carcinogenic dose of aristolochic acid. BMC Genomics. 2015;16:365.
  • Poon SL, Pang ST, McPherson JR, et al. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med. 2013;5:197ra101.
  • Hoang ML, Chen CH, Sidorenko VS, et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med. 2013;5:197ra102.
  • Chen T. Genotoxicity of aristolochic acid: A review. J Food Drug Anal. 2007;15:387–399.
  • Nik-Zainal S, Kucab JE, Morganella S, et al. The genome as a record of environmental exposure. Mutagenesis. 2015;30:763–770.
  • Shane BS, de Boer J, Watson DE, Haseman JK, Glickman BW, Tindall KR. LacI mutation spectra following benzo[a]pyrene treatment of Big Blue mice. Carcinogenesis 2000;21:715–25.
  • Lemaire MA, Schwartz A, Rahmouni AR, Leng M. Interstrand cross-links are preferentially formed at the d(GC) sites in the reaction between cis-diamminedichloroplatinum (II) and DNA. Proc Natl Acad Sci U S A 1991;88:1982–5.
  • Povirk LF, Shuker D.E. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994;318:205–26.
  • Anderson RD, Veigl ML, Baxter J, Sedwick W.D. Excision repair reduces doxorubicin-induced genotoxicity. Mutat Res 1993;294:215–22.
  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology 2012;30:174–178.
  • Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77:71–94.
  • Ohnishi O. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effect of polygenic mutations. Genetics 1977;87:529–45.
  • Ehling UH, Neuhauser-Klaus A. Induction of specific-locus mutations in male mice by ethyl methanesulfonate (EMS). Mutat Res 1989;227:91–5.
  • Mohd-Yusoff NF, Ruperao P, Tomoyoshi NE, Edwards D, Gresshoff PM, Biswas B, Batley J. Scanning the effects of ethyl methanesulfonate on the whole genome of Lotus japonicus using second-generation sequencing analysis. G3 (Bethesda) 2015;5:559–67.
  • Chu JS, Johnsen RC, Chua SY, Tu D, Dennison M, Marra M, Jones SJ, Baillie DL, Rose A.M. Allelic ratios and the mutational landscape reveal biologically significant heterozygous SNVs. Genetics 2012;190:1225–33.
  • Flibotte S, Edgley ML, Chaudhry I, Taylor J, Neil SE, Rogula A, Zapf R, Hirst M, Butterfield Y, Jones SJ, Marra MA, Barstead RJ, Moerman D.G. Whole-genome profiling of mutagenesis in Caenorhabditis elegans. Genetics 2010;185:431–41.
  • Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, Narula S, Hobert O. Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 2010;185:417–30.
  • Wang J, Chen T. Sequencing analysis of mutations induced by N-ethyl-N-nitrosourea at different sampling times in mouse bone marrow. Journal of applied toxicology 2009;30:133–141.
  • Mei N, Heflich RH, Moore MM, Chen T. Age-dependent sensitivity of Big Blue transgenic mice to the mutagenicity of N-ethyl-N-nitrosourea (ENU) in liver. Mutat Res-Fund Mol M 2005;572:14–26.
  • Slikker W, Mei N, Chen T. N-ethyl-N-nitrosourea (ENU) increased brain mutations in prenatal and neonatal mice but not in the adults. Toxicol Sci 2004;81:112–120.
  • Chen T, Harrington-Brock K, Moore M.M. Mutant frequencies and loss of heterozygosity induced by N-ethyl-N-nitrosourea in the Thymidine kinase gene of L5178Y/Tk+/−−3.7.2C mouse lymphoma cells. Mutagenesis 2002;17:105–109.
  • Chen T, Harrington-Brock K, Moore M.M. Mutant frequency and mutational spectra in the Tk and Hprt genes of N-ethyl-N-nitrosourea-treated mouse lymphoma cells. Environ Mol Mutagen 2002;39:296–305.
  • Dobrovolsky VN, Chen T, Heflich R.H. Molecular analysis of in vivo mutations induced by N-ethyl-N-nitrosourea in the autosomal Tk and the X-linked Hprt genes of mouse lymphocytes. Environ Mol Mutagen 1999;34:30–38.
  • O'Dwyer PJ, Leyland-Jones B, Alonso MT, Marsoni S, Wittes R.E. Etoposide (VP-16-213). Current status of an active anticancer drug. N Engl J Med 1985;312:692–700.
  • Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995;22:3–10.
  • Aydemir N, Bilaloglu R. Genotoxicity of two anticancer drugs, gemcitabine and topotecan, in mouse bone marrow in vivo. Mutat Res 2003;537:43–51.
  • Aydemir N, Celikler S, Bilaloglu R. In vitro genotoxic effects of the anticancer drug gemcitabine in human lymphocytes. Mutat Res 2005;582:35–41.
  • Hecht JR, Trarbach T, Jaeger E, Hainsworth J, Wolff R, Lloyd K, Bodoky G, Borner M, Laurent D, Jacques C. A randomized, double-blind, placebo-controlled, phase III study in patients (Pts) with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil/leucovorin and PTK787/ZK 222584 or placebo (CONFIRM-1). J Clin Oncol 2005;23:2s–2s.
  • Longley DB, Harkin DP, Johnston P.G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 2003;3:330–8.
  • Scott WJ, Ritter EJ, Wilson J.G. DNA synthesis inhibition and cell death associated with hydroxyurea teratogenesis in rat embryos. Dev Biol 1971;26:306–15.
  • Hanft VN, Fruchtman SR, Pickens CV, Rosse WF, Howard TA, Ware R.E. Acquired DNA mutations associated with in vivo hydroxyurea exposure. Blood 2000;95:3589–93.
  • Kozmin SG, Schaaper RM, Shcherbakova PV, Kulikov VN, Noskov VN, Guetsova ML, Alenin VV, Rogozin IB, Makarova KS, Pavlov Y.I. Multiple antimutagenesis mechanisms affect mutagenic activity and specificity of the base analog 6-N-hydroxylaminopurine in bacteria and yeast. Mutat Res 1998;402:41–50.
  • Lada AG, Stepchenkova EI, Waisertreiger IS, Noskov VN, Dhar A, Eudy JD, Boissy RJ, Hirano M, Rogozin IB, Pavlov Y.I. Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase. PLoS Genet 2013;9:e1003736.
  • Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA, Resnick MA, Gordenin D.A. Clustered Mutations in Yeast and in Human Cancers Can Arise from Damaged Long Single-Strand DNA Regions. Mol Cell 2012;46:424–435.
  • Chen T, Moore M.M., Screening for chemical mutagens using the mouse lymphoma assay. In Optimization in Drug Discovery: In-vitro Methods; Yan Z, Caldwell G.W. Eds.; Humana Press; Totowa, NJ; 2004, 337–352.
  • Downes DJ, Chonofsky M, Tan KL, Pfannenstiel BT, Reck-Peterson SL, Todd R.B. Characterization of the Mutagenic Spectrum of 4-Nitroquinoline 1-Oxide (4-NQO) in Aspergillus nidulans by Whole Genome Sequencing. G3-Genes Genom Genet 2014;4:2483–2492.
  • Dickins M, Wright K, Phillips M, Todd N. Toxicity and mutagenicity tests of 4 anti-cancer drugs in cultured Chinese hamster cells. Mutat Res 1985;143:149–54.
  • Kutscher LM, Shaham S. Forward and reverse mutagenesis in C. elegans. WormBook 2014, 1–26.
  • Soehnge H, Ouhtit A, Ananthaswamy O.N. Mechanisms of induction of skin cancer by UV radiation. Front Biosci 1997;2:d538–51.
  • Wang KL, Ma XL, Zhang X, Wu DF, Sun CY, Sun YZ, Lu XM, Wu CI, Guo CX, Ruan J. Using ultra-sensitive next generation sequencing to dissect DNA damage-induced mutagenesis. Sci Rep-Uk 2016;6.
  • Adewoye AB, Lindsay SJ, Dubrova YE, Hurles M.E. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline. Nat Commun 2015;6:6684.
  • Wang H, Nettleton D, Ying K. Copy number variation detection using next generation sequencing read counts. Bmc Bioinformatics 2014;15.
  • Muller KE, Marotti JD, de Abreu FB, Peterson JD, Miller TW, Chamberlin MD, Tsongalis GJ, Tafe L.J. Targeted next-generation sequencing detects a high frequency of potentially actionable mutations in metastatic breast cancers. Exp Mol Pathol 2016;100:421–5.
  • Couraud S, Vaca-Paniagua F, Villar S, Oliver J, Schuster T, Blanche H, Girard N, Tredaniel J, Guilleminault L, Gervais R, Prim N, Vincent M, Margery J, Larive S, Foucher P, Duvert B, Vallee M, Le Calvez-Kelm F, McKay J, Missy P, Morin F, Zalcman G, Olivier M, Souquet PJ, Bio C.I.-i. Noninvasive diagnosis of actionable mutations by deep sequencing of circulating free DNA in lung cancer from never-smokers: a proof-of-concept study from BioCAST/IFCT-1002. Clin Cancer Res 2014;20:4613–24.
  • Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen LN, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia MM, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning ZM, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton M.R. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463:191–U73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.