Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 36, 2018 - Issue 2
472
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Effects of noble metal nanoparticles on the hydroxyl radical scavenging ability of dietary antioxidants

, , , , , & show all

References

  • Fu PP. Introduction to the special issue: nanomaterials—toxicology and medical applications. J Food Drug Anal. 2014;22(1):1–2. doi:10.1016/j.jfda.2014.01.013. PMID:24673899.
  • McShan D, Zhang Y, Deng H, Ray PC, Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104. J Environ Sci Health, Part C 2015;33(3):369–384. doi:10.1080/10590501.2015.1055165.
  • Vance ME, Kuiken T, Vejerano EP, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnology 2015;6:1769. doi:10.3762/bjnano.6.181. PMID:26425429.
  • Jones S, Pramanik A, Sweet C, et al. Recent progress on the development of anisotropic gold nanoparticles: design strategies and growth mechanism. J Environ Sci Health, Part C 2017;35(1):47–66. doi:10.1080/10590501.2017.1280264.
  • Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008;176(1):1–12. doi:10.1016/j.toxlet.2007.10.004. PMID:18022772.
  • Tulve NS, Stefaniak AB, Vance ME, et al. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. Int J Hyg Environ Health 2015;218(3): 345–357. doi:10.1016/j.ijheh.2015.02.002. PMID:25747543.
  • Jaroenworaluck A, Sunsaneeyametha W, Kosachan N, Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf Interface Anal. 2006;38(4): 473–477. doi:10.1002/sia.2313.
  • Lin Y, Ren J, Qu X. Nano‐gold as artificial enzymes: hidden talents. Adv Mater. 2014;26(25):4200–4217. doi:10.1002/adma.201400238. PMID:24692212.
  • Zhang Y, Shareena Dasari TP, Deng H, Yu H. Antimicrobial activity of gold nanoparticles and ionic gold. J Environ Sci Health, Part C 2015;33(3):286–327. doi:10.1080/10590501.2015.1055161.
  • Zhao T, Zhou T, Yao Q, Hao C, Chen X. Metal nanoclusters: applications in environmental monitoring and cancer therapy. J Environ Sci Health, Part C 2015;33(2):168–187. doi:10.1080/10590501.2015.1030490.
  • Aijaz A, Zhu QL, Tsumori N, Akita T, Xu Q. Surfactant-free Pd nanoparticles immobilized to a metal–organic framework with size-and location-dependent catalytic selectivity. Chem Commun. 2015;51(13):2577–2580. doi:10.1039/C4CC09139F. PMID: 25569372.
  • Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Res. 2007;41(6):615–626. doi:10.1080/10715760601169679. PMID:17516233.
  • Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH. Comparison of the peroxidase‐like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. Chem Phys Chem. 2012;13(5):1199–1204. doi:10.1002/cphc.201100906. PMID:22383315.
  • Jiang H, Chen Z, Cao H, Huang Y. Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose. Analyst 2012;137(23):5560–5564. doi:10.1039/c2an35911a. PMID:23042152.
  • He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z. AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep. 2017;7:40103. doi:10.1038/srep40103. PMID:28051159.
  • Fan J, Yin JJ, Ning B, et al. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials 2011;32(6):1611–1618. doi:10.1016/j.biomaterials.2010.11.004. PMID:21112084.
  • He W, Zhou YT, Wamer WG, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 2013;34(3):765–773. doi:10.1016/j.biomaterials.2012.10.010. PMID:23103160.
  • He W, Liu Y, Yuan J, et al. Au@ Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 2011;32(4):1139–1147. doi:10.1016/j.biomaterials.2010.09.040. PMID:21071085.
  • Shen X, Liu W, Gao X, Lu Z, Wu X, Gao X. Mechanisms of oxidase and superoxide dismutation-like activities of gold, silver, platinum, and palladium, and their alloys: a general way to the activation of molecular oxygen. J Am Chem Soc. 2015;137(50):15882–15891. doi:10.1021/jacs.5b10346. PMID:26642084.
  • Liu J, Hu X, Hou S, et al. Au@ Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sens Actuators B: Chem. 2012;166:708–714. doi:10.1016/j.snb.2012.03.045.
  • He W, Zhou YT, Wamer WG, Boudreau MD, Yin JJ. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012;33(30):7547–7555. doi:10.1016/j.biomaterials.2012.06.076. PMID:22809647.
  • He W, Wamer W, Xia Q, Yin JJ, Fu PP. Enzyme-like activity of nanomaterials. J Environ Sci Health, Part C 2014;32(2):186–211. doi:10.1080/10590501.2014.907462.
  • Liu Y, Wu H, Chong Y, et al. Platinum nanoparticles: efficient and stable catechol oxidase mimetics. ACS Appl Mater Interfaces 2015;7(35):19709–19717. doi:10.1021/acsami.5b05180.
  • Liu Y, Wu H, Li M, Yin JJ, Nie Z. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen. Nanoscale 2014;6(20):11904–11910. doi:10.1039/C4NR03848G. PMID:25175625.
  • Ge C, Fang G, Shen X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 2016;10(11):10436–10445. doi:10.1021/acsnano.6b06297. PMID:27934089.
  • Li J, Liu W, Wu X, Gao X. Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 2015;48:37–44. doi:10.1016/j.biomaterials.2015.01.012. PMID:25701030.
  • Zhou YT, He W, Wamer WG, et al. Enzyme-mimetic effects of gold@ platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale 2013;5(4):1583–1591. doi:10.1039/c2nr33072e. PMID:23329011.
  • Chen C, Fan S, Li C, et al. Platinum nanoparticles inhibit antioxidant effects of vitamin C via ascorbate oxidase-mimetic activity. J Mater Chem B 2016;4(48):7895–7901. doi:10.1039/C6TB02382G.
  • Zhou YT, He W, Lo YM, Hu X, Wu X, Yin JJ. Effect of silver nanomaterials on the activity of thiol-containing antioxidants. J Agric Food Chem. 2013;61(32):7855–7862. doi:10.1021/jf402146s. PMID:23889173.
  • Li M, Chong Y, Fu PP, Croley TR, Lo YM, Yin JJ. Effects of P25 TiO2 nanoparticles on free radical scavenging ability of antioxidants when exposed to simulated sunlight. J Agric Food Chem. 2017;65(45):9893–9901. doi:10.1021/acs.jafc.7b03407. PMID:29058433.
  • Fu PP, Xia Q, Hwang H-M, Ray PC, . Mechanism of nanotoxicity – generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75. doi:10.1016/j.jfda.2014.01.005. PMID:24673904.
  • Yin JJ, Fu PP, Lutterodt H, Zhou YT, Antholine WE, Wamer W. Dual role of selected antioxidants found in dietary supplements: crossover between anti-and pro-oxidant activities in the presence of copper. J Agric Food Chem. 2012;60(10):2554–2561. doi:10.1021/jf204724w. PMID:22339379.
  • Yin JJ, Fu PP. Magnetic resonance in food science: challenges in a changing world. R Soc Chem. 2009;319:213.
  • Wang SY, Chen CT, Yin JJ. Effect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010;120(1):199–204. doi:10.1016/j.foodchem.2009.10.007.
  • Wennermark B, Ahlmen H, Jaegerstad M. Improved vitamin E retention by using freshly milled whole-meal wheat flour during drum-drying. J Agric Food Chem. 1994;42(6):1348–1351. doi:10.1021/jf00042a019.
  • Zhang D, Hamauzu Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem. 2004;88(4):503–509. doi:10.1016/j.foodchem.2004.01.065.
  • Dragsted LO, Strube M, Larsen JC. Cancer‐protective factors in fruits and vegetables: biochemical and biological background. Basic Clin Pharmacool Toxicol. 1993;72(s1):116–135. doi:10.1111/j.1600-0773.1993.tb01679.x.
  • Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int. J. Epidemiol. 1997;26(1):1–13. doi:10.1093/ije/26.1.1. PMID:9126498.
  • Shahidi F. and Naczk M, eds. Phenolic Compounds in Cereals, Legumes and Nuts. In Phenolics in food and nutraceuticals. Boca Raton: CRC Press; 2004:17–76.
  • Augustin MA, Sanguansri L. Encapsulation of bioactives. Food Materials Science: Principles and Applications. New York: Springer; 2008:577–601.
  • Bendich A. Antioxidant micronutrients and immune responses. Ann N Y Acad Sci. 1990;587(1):168–180. doi:10.1111/j.1749-6632.1990.tb00144.x. PMID:2193567.
  • Chun OK, Floegel A, Chung SJ, Chung CE, Song WO, Koo SI. Estimation of antioxidant intakes from diet and supplements in US adults. J Nutr. 2009: jn. 109. 114413.
  • Tang H R, Covington AD, Hancock RA. Structure–activity relationships in the hydrophobic interactions of polyphenols with cellulose and collagen. Biopolymers 2003;70(3):403–413. doi:10.1002/bip.10499. PMID:14579312.
  • Tang HR, Covington AD, Hancock RA. Synthesis and spectroscopic characterisation of the polygalloyl esters of polyols-models for gallotannins. J Soc Leather Technol Chem. 2003;87(5):179–188.
  • Madsen HL, Bertelsen G. Spices as antioxidants. Trends Food Sci Technol. 1995;6(8):271–277. doi:10.1016/S0924-2244(00)89112-8.
  • Nakatani N. Natural antioxidants from spices. ACS Symposium Series. 1992;507:72–86.
  • Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea-a review. J Am Coll Nutr. 2006;25(2):79–99. doi:10.1080/07315724.2006.10719518. PMID:16582024.
  • Del Rio D, Stewart AJ, Mullen W, et al. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem. 2004;52(10):2807–2815. doi:10.1021/jf0354848. PMID:15137818.
  • Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Critical Reviews in Food Science and Nutrition. 2003;43:89–143.
  • Long R, Mao K, Ye X, et al. Surface facet of palladium nanocrystals: a key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J Am Chem Soc. 2013;135(8):3200–3207. doi:10.1021/ja311739v. PMID:23391267.
  • Jung YS, Lim WT, Park JY, Kim YH. Effect of pH on Fenton and Fenton‐like oxidation. Environ Technol. 2009;30(2):183–190. doi:10.1080/09593330802468848. PMID:19278159.
  • Ahola T, Fellman V, Kjellmer I, Raivio KO, Lapatto R. Plasma 8-isoprostane is increased in preterm infants who develop bronchopulmonary dysplasia or periventricular leukomalacia. Pediatr Res. 2004;56(1):88–93. doi:10.1203/01.PDR.0000130478.05324.9D. PMID:15128912.
  • Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663. doi:10.1007/s11095-008-9569-4. PMID:18404251.
  • Fagerberg JH, Tsinman O, Sun N, Tsinman K, Avdeef A, Bergström CA. Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant dissolution media. Mol Pharm. 2010;7(5):1419–1430. doi:10.1021/mp100049m. PMID:20507160.
  • Liu J, Hurt RH. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol. 2010;44(6):2169–2175. doi:10.1021/es9035557. PMID:20175529.
  • Hedberg J, Skoglund S, Karlsson ME, Wold S, Odnevall Wallinder I, Hedberg Y. Sequential studies of silver released from silver nanoparticles in aqueous media simulating sweat, laundry detergent solutions and surface water. Environ Sci Technol. 2014;48(13):7314–7322. doi:10.1021/es500234y.
  • Peretyazhko TS, Zhang Q, Colvin VL. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol. 2014;48(20):11954–11961. doi:10.1021/es5023202.
  • He X, Aker W, Fu PP, Hwang H-M. Nano-bio-eco interactions of engineered nanomaterials. J Environ Sci Health, Part C 2018;36(1):21–42. doi:org/10.1080/10590501.2017.1418793.
  • Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79(3):307–313. doi:10.1016/S0308-8146(02)00145-0.
  • Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int. 2006;48(4):263–274. doi:10.1016/j.neuint.2005.10.010. PMID:16343693.
  • Legeay S, Rodier M, Fillon L, Faure S, Clere N. Epigallocatechin gallate: a review of its beneficial properties to prevent metabolic syndrome. Nutrients 2015;7(7):5443–5468. doi:10.3390/nu7075230. PMID:26198245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.