Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 36, 2018 - Issue 3
653
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Organism-derived phthalate derivatives as bioactive natural products

, , , , &

References

  • Saeidnia S, Abdollahi M. Are medicinal plants polluted with phthalates? DARU J Pharm Sci. 2013;21(1):43.
  • Net S, Sempere R, Delmont A, Paluselli A, Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ Sci Technol. 2015;49(7):4019–4035.
  • Hu X, Gu Y, Huang W, Yin D. Phthalate monoesters as markers of phthalate contamination in wild marine organisms. Environ Pollut. 2016;218:410–418.
  • Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596–1605.
  • Smaoui S, Mathieu F, Elleuch L, Coppel Y, Merlina G, Karray-Rebai I, Mellouli L.. Taxonomy, purification and chemical characterization of four bioactive compounds from new Streptomyces sp. TN256 strain. World J Microbiol Biotechnol. 2012;28(3):793–804.
  • Jiang J, Ma L, Yuan L, Wang X, Zhang W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 2007;232(3):286–293.
  • Al-Bari MAA, Bhuiyan MSA, Flores ME, Petrosyan P, Garcia VM, Ul IMA. Streptomyces bangladeshensis sp. nov., isolated from soil, which produces bis-(2-ethylhexyl) phthalate. Int J Syst Evol Microbiol. 2005;55:1973–1977.
  • Pietra F. Secondary metabolites from marine microorganisms: Bacteria, protozoa, algae and fungi. Achievements and prospects. Nat Prod Rep. 1997;14(5):453–464.
  • Lee KH, Kim JH, Lim DS, Kim CH. Anti-leukaemic and anti-mutagenic effects of di(2-ethylhexyl)phthalate isolated from Aloe vera Linne. J Pharm Pharmacol. 2000;52(5):593–598.
  • Namikoshi M, Fujiwara T, Nishikawa T, Ukai K. Natural abundance 14C content of dibutryl phthalate (DBP) from three marine algae. Mar Drugs. 2006;4(4):290–297.
  • Tian CK, Ni JR, Chang F, Liu ST, Xu N, Sun WL, Xie Y, Guo YZ, Ma YR, Yang ZX, Dang CY, Huang YF, Tian ZX, Wang YP. Bio-source of di-n-butyl phthalate production by filamentous fungi. Sci Rep. 2016;6(1):8.
  • Bhimba VB, Meenupriya J, Joel EL, Naveena DE, Kumar S, Thangaraj M. Antibacterial activity and characterization of secondary metabolites isolated from mangrove plant Avicennia officinalis. Asian Pac J Trop Med. 2010;3(7):544–546.
  • Islam MT, Ahn SY, Cho SM, Yun HK. Isolation of antibacterial compounds from hairy vetch (vicia villosa) against grapevine crown gall pathogen. Hortic Environ Biotechnol. 2013;54(4):338–345.
  • Blažević I, Radonić A, Mastelić J, Zekić M, Skočibušić M, Maravić A. Hedge mustard (Sisymbrium officinale): Chemical diversity of volatiles and their antimicrobial activity. Chem. Biodivers 2010;7(8):2023–2034.
  • Cui JL, Wang CL, Guo SX, Yang L, Xiao PG, Wang ML. Evaluation of fungus-induced agilawood from Aquilaria sinensis in China. Symbiosis 2013;60(1):37–44.
  • Bu T, Liu M, Zheng LH, Guo YW, Lin XK. α-Glucosidase inhibition and the in vivo hypoglycemic effect of butyl-isobutyl-phthalate derived from the Laminaria japonica Rhizoid. Phytother Res. 2010;24(11):1588–1591.
  • Lin N, Chen J, Zhang WK, Yi B. Study on volatile oil components from Lignum Aquilariae resinatum produced in Hainan. Hainan Med J. 2016;27:1383–1385. (In Chinese)
  • Nguyen DTM, Nguyen DH, Hwa LL, Lee HB, Shin JH, Kim EK. Inhibition of melanogenesis by dioctyl phthalate isolated from Nigella glandulifera Freyn. J Microbiol Biotechnol. 2007;17:1585–1590.
  • Bagalkotkar G. Isolation and characterisation of compounds from ‘naga buana’ (Phyllanthus pulcher) and ‘similit matinggi’ (Casearia capitellata) and their cytotoxic effects on cancer cell lines. Doctor Thesis, Universiti Putra Malaysia, Kuala Lumpur, Malaysia, 2007.
  • Rameshthangam P, Ramasamy P. Antiviral activity of bis(2-methylheptyl)phthalate isolated from Pongamia pinnata leaves against white spot syndrome virus of Penaeus monodon Fabricius. Virus Res. 2007;126(1–2):38–44.
  • Saleem M, Nazir M, Akhtar N, Onocha PA, Riaz N, Jabbar A, Ali MS, Sultana N. New phthalates from Phyllanthus muellerianus (Euphorbiaceae). J Asian Nat Prod Res. 2009;11(11):974–977.
  • Khan D, Khan HU, Khan F, Khan S, Badshah S, Khan AS, Samad A, Ali F, Khan I, Muhammad N. New cholinesterase inhibitory constituents from Lonicera quinquelocularis. PLoS One. 2014;9(4):e94952.
  • Zhang X. Cholinergic activity and amyloid precursor protein processing in aging and Alzheimer’s disease. Curr. Drug Targets-CNS Neurol Disord. 2004;3(2):137–152.
  • Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Production of bioactive metabolites by Nocardia levis MK-VL_113. Lett Appl Microbiol. 2009;49(4):484–490.
  • Qian ZJ, Kang KH, Kim SK. Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus kuda Bleeler. Biotechnol Bioproc E. 2012;17(5):1031–1040.
  • Wahidullah S, Naik BG, Al-Fadhli AA. Chemotaxonomic study of the demosponge Cinachyrella cavernosa (Lamarck). Biochem Syst Ecol. 2015;58:91–96.
  • Li Y, Qian ZJ, Kim SK. Cathepsin B inhibitory activities of three new phthalate derivatives isolated from seahorse, Hippocampus kuda Bleeler. Bioorg Med Chem Lett. 2008;18(23):6130–6134.
  • Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol. 2014;41(2):371–386.
  • Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 2014;169(4):262–278.
  • Mangamuri U, Muvva V, Poda S, Naragani K, Munaganti RK, Chitturi B, Yenamandra V. Bioactive metabolites produced by Streptomyces cheonanensis VUK-A from Coringa mangrove sediments: Isolation, structure elucidation and bioactivity. 3 Biotech. 2016;6(1):63–68.
  • Lee DS. Dibutyl phthalate, an alpha-glucosidase inhibitor from Streptomyces melanosporofaciens . J Biosci Bioeng. 2000;89(3):271–273.
  • Roy RN, Laskar S, Sen SK. Dibutyl phthalate, the bioactive compound produced by Streptomyces albidoflavus 321.2. Microbiol Res. 2006;161(2):121–126.
  • Ahsan T, Chen JG, Zhao XX, Irfan M, Wu YH. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Expr. 2017;7(1):9.
  • Hussain A, Rather MA, Dar MS, Aga MA, Ahmad N, Manzoor A, Qayum A, Shah A, Mushtaq S, Ahmad Z. Novel bioactive molecules from Lentzea violacea strain AS08 using one strain-many compounds (OSMAC) approach. Bioorg Med Chem Lett. 2017;27(11):2579–2582.
  • Abd-Elnaby H, Abo-Elala G, Abdel-Raouf U, Abd-Elwahab A, Hamed M. Antibacterial and anticancer activity of marine Streptomyces parvus: Optimization and application. Biotechnol Eq. 2016;30(1):180–191.
  • Driche EH, Belghit S, Bijani C, Zitouni A, Sabaou N, Mathieu F, Badji B. A new streptomyces strain isolated from Saharan soil produces di(2-ethylhexyl) phthalate, a metabolite active against methicillin-resistant Staphylococcus aureus. Ann Microbiol. 2015;65(3):1341–1350.
  • Park SC, Kim CJ, Uramoto M, Yun HI, Yoon KH, Oh TK. Antibacterial substance produced by Streptococcus faecium under anaerobic culture. Biosci Biotechnol Biochem. 1995;59(10):1966–1967.
  • Zhang Y, Mu J, Gu X, Zhao C, Wang X, Xie Z. A marine sulfate-reducing bacterium producing multiple antibiotics: Biological and chemical investigation. Mar. Drugs 2009;7(3):341–354.
  • Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude D, Sripadi P, Misra S, Amanchy R, Upadhyayula SM. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. Excli J. 2017;16:375–387.
  • Kalinovskaya NI, Romanenko LA, Kalinovsky AI. Antibacterial low-molecular-weight compounds produced by the marine bacterium Rheinheimera japonica KMM9513T. Anton Leeuw Int J Gen Mol Microbiol. 2017;110(5):719–726.
  • Gu XJ, Mu J, Zhang Y, Liang YT, Li W. Study of antibacterial substances from a marine anaerobic denitrifying bacterial strain Pseudomonas stutzeri. J Dalian Jiaotong Univ. 2011;32:66–69. (In Chinese)
  • Priya AM, Jayachandran S. Induction of apoptosis and cell cycle arrest by bis(2-ethylhexyl) phthalate produced by marine Bacillus pumilus MB40. Chem-Biol Interact. 2012;195(2):133–143.
  • Qi SH, Xu Y, Gao J, Qian PY, Zhang S. Antibacterial and antilarval compounds from marine bacterium Pseudomonas rhizosphaerae. Ann Microbiol. 2009;59(2):229–233.
  • Selosse MA, Baudoin E, Vandenkoornhuyse P. Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol. 2004;327(7):639–648.
  • Chen Y, Zheng W, Wang LM, Cui HL, Li GX, Liu XG, Han CC, Zeng RS. Effect of toxins isolated from Exserohilum monoceras (Drechsler) Leonard and Suggs on Echinochloa crus-galli (L.) Beauv. Agr Sci China 2009;8(8):972–978.
  • Basaran P, Demirbas RM. Spectroscopic detection of pharmaceutical compounds from an aflatoxigenic strain of Aspergillus parasiticus. Microbiol Res. 2010;165(6):516–522.
  • Savard ME, Miller JD, Blais LA, Seifert KA, Samson RA. Secondary metabolites of Penicillium bilaii strain PB-50. Mycopathologia 1994;127(1):19–27.
  • Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol. 2009;25(3):399–406.
  • Chen M, Zhang W, Shao CL, Chi ZM, Wang CY. DNA methyltransferase inhibitor induced fungal biosynthetic products: Diethylene glycol phthalate ester oligomers from the marine-derived fungus Cochliobolus lunatus. Mar Biotechnol. 2016;18(3):409–417.
  • Lucas EMF, Abreu LM, Marriel IE, Pfenning LH, Takahashi JA. Phthalates production from Curvularia senegatensis (Speg.) Subram, a fungal species associated to crops of commercial value. Microbiol Res. 2008;163(5):495–502.
  • Sun YK, Guo ZK, Iku S, Saito T, Kurasaki M. Diethyl phthalate enhances expression of SIRT1 and DNMT3a during apoptosis in PC12 cells. J Appl Toxicol. 2013;33(12):1484–1492.
  • Kang JC, Jee JH, Koo JG, Keum YH, Jo SG, Park KH. Anti-oxidative status and hepatic enzymes following acute administration of diethyl phthalate in olive flounder Paralichthys olivaceus, a marine culture fish. Ecotoxicol Environ Saf. 2010;73(6):1449–1455.
  • Xu H, Shao X, Zhang Z, Zou Y, Wu X, Yang L. Oxidative stress and immune related gene expression following exposure to di-n-butyl phthalate and diethyl phthalate in zebrafish embryos. Ecotoxicol Environ Saf. 2013;93:39–44.
  • Kim SM, Yoo JA, Baek JM, Cho KH. Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions. Toxicol in Vitro. 2015;30(1):383–393.
  • Ghorpade N, Mehta V, Khare M, Sinkar P, Krishnan S, Rao CV. Toxicity study of diethyl phthalate on freshwater fish Cirrhina mrigala. Ecotoxicol Environ Saf. 2002;53(2):255–258.
  • Zhang G. Effect of diethyl phthalate on biochemical indicators of carp liver tissue. Toxin Rev. 2015;34(1):21–27.
  • Pradhan A, Olsson PE, Jass J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. Chemosphere 2018;190:375–382.
  • Hu G, Li J, Shan Y, Li X, Zhu Q, Li H, Wang Y, Chen X, Lian Q, Ge RS. In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development. Toxicology 2018;395:23–33.
  • Gardner ST, Wood AT, Lester R, Onkst PE, Burnham N, Perygin DH, Rayburn J. Assessing differences in toxicity and teratogenicity of three phthalates, Diethyl phthalate, Di-n-propyl phthalate, and Di-n-butyl phthalate, using Xenopus laevis embryos. J Toxicol Env Heal A. Part A. 2016;79(2):71–82.
  • Xiao Q, Li D, Guo R, Zheng L, An X, Zeng Z. In vivo in vitro Paralichthys olivaceus and toxicities of diethyl phthalate to flounder fish and its gill cell line (FG cells). JEB 2018;39(1):73–81.
  • Mahaboob Basha P, Radha MJ. Gestational di-n-butyl phthalate exposure induced developmental and teratogenic anomalies in rats: A multigenerational assessment. Environ Sci Pollut Res. 2017;24(5):4537–4551.
  • Meek ME, Chan PKL. Bis(2-ethylhexyl) phthalate: Evaluation of risks to health from environmental exposure in Canada. J Environ Sci Health Part C. 1994;12(2):179–194.
  • Dobrzyńska MM, Tyrkiel EJ, Pachocki KA. Developmental toxicity in mice following paternal exposure to di-n-butyl-phthalate (DBP). Biomed Environ Sci. 2011;24(5):569–578.
  • Zhang WZ, Yong L, Jia XD, Li N, Fan YX. Combined subchronic toxicity of bisphenol A and dibutyl phthalate on male rats. Biomed Environ Sci. 2013;26(1):63–69.
  • Li XH, Yin PH, Zhao L. Effects of individual and combined toxicity of bisphenol a, dibutyl phthalate and cadmium on oxidative stress and genotoxicity in HepG 2 cells. Food Chem Toxicol. 2017;105:73–81.
  • Kurohane K, Sekiguchi K, Ogawa E, Tsutsumi M, Imai Y. Dibutyl phthalate rather than monobutyl phthalate facilitates contact hypersensitivity to fluorescein isothiocyanate in a mouse model. Biol. Pharm. Bull. 2017;40(11):2010–2013.
  • Johnson KJ, McDowell EN, Viereck MP, Xia JQ. Species-specific dibutyl phthalate fetal testis endocrine disruption correlates with inhibition of SREBP2-dependent gene expression pathways. Toxicol Sci. 2011;120(2):460–474.
  • Zhang J, Jin S, Zhao J, Li H. Effect of dibutyl phthalate on expression of connexin 43 and testosterone production of Leydig cells in adult rats. Environ Toxicol Pharmacol. 2016;47:131–135.
  • Sen N, Liu X, Craig ZR. Short term exposure to di-n-butyl phthalate (DBP) disrupts ovarian function in young CD-1 mice. Reprod Toxicol. 2015;53:15–22.
  • Chen X, An H, Ao L, Sun L, Liu W, Zhou Z, Wang Y, Cao J. The combined toxicity of dibutyl phthalate and benzo(a)pyrene on the reproductive system of male Sprague Dawley rats in vivo. J Hazard Mater. 2011;186(1):835–841.
  • Poopal RK, Ramesh M, Maruthappan V, Babu Rajendran R. Potential effects of low molecular weight phthalate esters (C16H22O4 and C12H14O4) on the freshwater fish Cyprinus carpio. Toxicol Res. 2017;6(4):505–520.
  • Perez-Albaladejo E, Fernandes D, Lacorte S, Porte C. Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells. Toxicol in Vitro. 2017;38:41–48.
  • Li XJ, Jiang L, Chen L, Chen HS, Li X. Neurotoxicity of dibutyl phthalate in brain development following perinatal exposure: A study in rats. Environ Toxicol Phar. 2013;36(2):392–402.
  • Khalil SR, Elhakim YA, El-Murr A. Sublethal concentrations of di-n-butyl phthalate promote biochemical changes and DNA damage in juvenile Nile tilapia (Oreochromis niloticus). Jpn J Vet Res. 2016;64:67–80.
  • Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, Yoo HJ, Cho IH, Kim HW. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ. Environ Health Perspect. 2010;118(7):1027–1032.
  • Wang XY, Sheng N, Cui RN, Zhang HX, Wang JS, Dai JY. Gestational and lactational exposure to di-isobutyl phthalate via diet in maternal mice decreases testosterone levels in male offspring. Chemosphere 2017;172:260–267.
  • Pan YT, Wang XY, Yeung LWY, Sheng N, Cui QQ, Cui RN, Zhang HX, Dai JY. Dietary exposure to di-isobutyl phthalate increases urinary 5-methyl-2'-deoxycytidine level and affects reproductive function in adult male mice. J Environ Sci. 2017;61:14–23.
  • Kismali G, Yurdakok Dikmen B, Kuzukiran O, Arslan P, Filazi A. Phthalate induced toxicity in prostate cancer cell lines and effects of alpha lipoic acid. BLL 2017;118(08):460–466.
  • Jiang Y, Liu DP, Ding YL, Li XH, Wang CL. Release of dioctyl phthalate (DOP) from polyvinyl chloride (PVC) in apple packaging. Prog Nat Sci. 2005;15(1):145–148.
  • Mahmoud ME, Yakout AA, El Aziz MTA, Osman MM, Abdel Fattah TM. A novel cellulose-dioctyl phthate-baker’s yeast biosorbent for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II) ). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(10):1072–1081.
  • Zong T, Lai LD, Hu J, Guo MJ, Li M, Zhang L, Zhong CX, Yang B, Wu L, Zhang DL. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice. J Hazard Mater. 2015;297:25–33.
  • Carbone S, Samaniego YA, Cutrera R, Reynoso R, Cardoso N, Scacchi P, Moguilevsky JA, Ponzo OJ. Different effects by sex on hypothalamic-pituitary axis of prepubertal offspring rats produced by in utero and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP). Neurotoxicology 2012;33(1):78–84.
  • Zhang W, Shen XY, Zhang WW, Chen H, Xu WP, Wei W. The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level. Toxicol Mech Method. 2017;27(4):245–252.
  • Andrade AJM, Grande SW, Talsness CE, Grote K, Chahoud I. A dose–response study following in utero, and lactational exposure to di-(2-ethylhexyl) phthalate (DEHP): Non-monotonic dose–response and low dose effects on rat brain aromatase activity. Toxicology 2006;227(3):185–192.
  • Wei N, Feng XY, Xie ZQ, Zhang YA, Feng Y. Long-term di (2-ethylhexyl)-phthalate exposure promotes proliferation and survival of HepG2 cells via activation of NFκB. Toxicol in Vitro. 2017;42:86–92.
  • Ambruosi B, Uranio MF, Sardanelli AM, Pocar P, Martino NA, Paternoster MS, Amati F, Dell Aquila ME. In vitro acute exposure to DEHP affects oocyte meiotic maturation, energy and oxidative stress parameters in a large animal model. PLoS One. 2011;6(11):e27452.
  • Li SG, Dai JC, Zhang LQ, Zhang J, Zhang ZQ, Chen B. An association of elevated serum prolactin with phthalate exposure in adult men. Biomed Environ Sci. 2011;24(1):31–39.
  • Borch J, Metzdorff SB, Vinggaard AM, Brokken L, Dalgaard M. Mechanisms underlying the anti-androgenic effects of diethylhexyl phthalate in fetal rat testis. Toxicology 2006;223(1–2):144–155.
  • Yin XQ, Ma T, Han RT, Ding J, Zhang H, Han XD, Li DM. MiR-301b-3p/3584-5p enhances low-dose mono-n-butyl phthalate (MBP)-induced proliferation by targeting Rasd1 in Sertoli cells. Toxicol in Vitro. 2018;47:79–88.
  • Ema M, Kurosaka R, Amano H, Ogawa Y. Developmental toxicity evaluation of mono-n-butyl phthalate in rats. Toxicol Lett. 1995;78(2):101–106.
  • Shono T, Taguchi T. Short-time exposure to mono-n-butyl phthalate (MBP) induced oxidative stress associated with DNA damage and the atrophy of the testis in pubertal rats. Environ Sci Pollut Res. 2014;21(4):3187–3190.
  • Venkata NG, Robinson JA, Cabot PJ, Davis B, Monteith GR, Roberts-Thomson SJ. Mono(2-ethylhexyl)phthalate and mono-n-butyl phthalate activation of peroxisome proliferator activated-receptors alpha and gamma in breast. Toxicol Lett. 2006;163(3):224–234.
  • Zhang H, Zhao Z, Wang H. Cytotoxic natural products from marine sponge-derived microorganisms. Mar Drugs. 2017;15:1(3):68.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.