Publication Cover
Journal of Environmental Science and Health, Part C
Environmental Carcinogenesis and Ecotoxicology Reviews
Volume 37, 2019 - Issue 2
393
Views
9
CrossRef citations to date
0
Altmetric
Articles

Solar-excited graphene quantum dots for bacterial inactivation via generation of reactive oxygen species

, , , &

References

  • Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Curr Envir Health Rpt. 2015;2(1):95–106. doi:10.1007/s40572-014-0037-5.
  • Schwarzenbach RP, Escher BI, Fenner K, et al. The challenge of micropollutants in aquatic systems. Science. 2006;313(5790):1072–1077. doi:10.1126/science.1127291.
  • Wang WJ, Li GY, Xia DH, An TC, Zhao HJ, Wong PK. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ Sci: Nano. 2017;4(4):782–799. doi:10.1039/C7EN00063D.
  • Zhang C, Li Y, Shuai DM, Shen Y, Xiong W, Wang LQ. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review. Chemosphere 2019;214:462–479. doi:10.1016/j.chemosphere.2018.09.137.
  • Brunet L, Lyon DY, Hotze EM, Alvarez PJ, Wiesner MR. Comparative photoactivity and antibacterial properties of C-60 fullerenes and titanium dioxide nanoparticles. Environ Sci Technol. 2009;43(12):4355–4360. doi:10.1021/es803093t.
  • Li M, He WW, Liu Y, et al. FD&C Yellow No. 5 (Tartrazine) Degradation via reactive oxygen species triggered by TiO2 and Au/TiO2 nanoparticles exposed to simulated sunlight. J Agric Food Chem. 2014;62:12052–12060. doi:10.1021/jf5045052.
  • Li M, Yin JJ, Wamer WG, Lo YM. Mechanistic characterization of titanium dioxide nanoparticle-induced toxicity using electron spin resonance. J Food Drug Anal. 2014;22(1):76–85. doi:10.1016/j.jfda.2014.01.006.
  • Wamer WG, Yin JJ, Wei RR. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Bio Med. 1997;23(6):851–858. doi:10.1016/S0891-5849(97)00068-3.
  • Zhu SJ, Zhang JH, Qiao CY, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–6860. doi:10.1039/c1cc11122a.
  • Peng J, Gao W, Gupta BK, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–849. doi:10.1021/nl2038979.
  • Chong Y, Ma Y, Shen H, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014;35(19):5041–5048. doi:10.1016/j.biomaterials.2014.03.021.
  • Kuo WS, Shao YT, Huang KS, Chou TM, Yang CH. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl Mater Interfaces. 2018;10(17):14438–14446. doi:10.1021/acsami.8b01429.
  • Sun YP, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7757. doi:10.1021/ja062677d.
  • Dong YQ, Pang HC, Yang HB, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed. 2013;52(30):7800–7804. doi:10.1002/anie.201301114.
  • Tang LB, Ji RB, Cao XK, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano. 2012;6(6):5102–5110. doi:10.1021/nn300760g.
  • Chen WF, Li DJ, Tian L, et al. Synthesis of graphene quantum dots from natural polymer starch for cell imaging. Green Chem. 2018;20(19):4438–4442. doi:10.1039/C8GC02106F.
  • Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing Graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015;11(14):1620–1636. doi:10.1002/smll.201402648.
  • Chong Y, Ge C, Fang G, et al. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano. 2016;10(9):8690–8699. doi:10.1021/acsnano.6b04061.
  • Ge JC, Lan MH, Zhou BJ, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat Commun 2014;5:4596.
  • Markovic ZM, Ristic BZ, Arsikin KM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials 2012;33(29):7084–7092. doi:10.1016/j.biomaterials.2012.06.060.
  • Ristic BZ, Milenkovic MM, Dakic IR, et al. Photodynamic antibacterial effect of graphene quantum dots. Biomaterials 2014;35(15):4428–4435. doi:10.1016/j.biomaterials.2014.02.014.
  • Christensen IL, Sun YP, Juzenas P. Carbon dots as antioxidants and prooxidants. J Biomed Nanotechnol. 2011;7(5):667–676.
  • Ge JC, Jia QY, Liu WM, et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv Healthcare Mater. 2016;5(6):665–675. doi:10.1002/adhm.201500720.
  • Zhang JY, Lu XM, Tang DD, et al. Phosphorescent carbon dots for highly efficient oxygen photosensitization and as photo-oxidative nanozymes. ACS Appl Mater Interfaces. 2018;10(47):40808–40814. doi:10.1021/acsami.8b15318.
  • Hassan M, Gomes VG, Dehghani A, Ardekani SM. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018;11(1):1–41. doi:10.1007/s12274-017-1616-1.
  • Meziani MJ, Dong XL, Zhu L, et al. Visible-light-activated bactericidal functions of carbon "quantum" dots. ACS Appl Mater Interfaces. 2016;8(17):10761–10766. doi:10.1021/acsami.6b01765.
  • Sidhu JS, Pandiyan T, Kaur N, Singh N. The photochemical degradation of bacterial cell wall using penicillin-based carbon dots: weapons against multi-drug resistant (MDR) strains. Chemistryselect 2017;2:9277–9283.
  • Xu X, Chong Y, Liu X, et al. Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater 2019;84:328–338.
  • Chong Y, Ge CC, Fang G, et al. Light-enhanced antibacterial activity of graphene oxide, mainly via accelerated electron transfer. Environ Sci Technol. 2017;51(17):10154–10161. doi:10.1021/acs.est.7b00663.
  • Li RB, Mansukhani ND, Guiney LM, et al. Identification and optimization of carbon radicals on hydrated graphene oxide for ubiquitous antibacterial coatings. ACS Nano. 2016;10(12):10966–10980. doi:10.1021/acsnano.6b05692.
  • Yang L, Zhang RL, Liu BH, et al. pi-Conjugated carbon radicals at graphene oxide to initiate ultrastrong chemiluminescence. Angew Chem Int Ed. 2014;53(38):10109–10113. doi:10.1002/anie.201405295.
  • Karahan HE, Wiraja C, Xu CJ, et al. Graphene materials in antimicrobial nanomedicine: current status and future perspectives. Adv Healthcare Mater. 2018;7(13):1701406. doi:10.1002/adhm.201701406.
  • Zhao L, Duan GX, Yang ZX, et al. Particle size-dependent antibacterial activity and murine cell cytotoxicity induced by graphene oxide nanomaterials. J Nanomater. 2016;2016:1. doi:10.1155/2016/6709764.
  • Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11(7):6703–6716. doi:10.1021/acsnano.7b01023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.