328
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic activity of polyaniline/Fe-doped TiO2 composites by in situ polymerization method

&
Pages 267-276 | Received 14 Aug 2018, Accepted 27 Nov 2018, Published online: 07 Feb 2019

References

  • Fernandez, C.; Larrechi, M. S.; Callao, M. P. An Analytical Overview of Processes for Removing Organic Dyes from Wastewater Effluents. Trac-Trend. Anal. Chem. 2010, 29, 1202–1211. DOI:10.1016/j.trac.2010.07.011.
  • Zhu, T.; Chen, J. S.; Lou, X. W. D. Highly Efficient Removal of Organic Dyes from Waste Water Using Hierarchical NiO Spheres with High Surface Area. J. Phys. Chem. C 2012, 116, 6873–6878. DOI:10.1021/jp300224s.
  • Zangeneh, H.; Zinatizadeh, A. A. L.; Habibi, M.; Akia, M.; Isa, M. H. Photocatalytic Oxidation of Organic Dyes and Pollutants in Wastewater Using Different Modified Titanium Dioxides: A Comparative Review. J. Ind. Eng. Chem. 2015, 26, 1–36. DOI:10.1016/j.jiec.2014.10.043.
  • Barakat, M. A.; Kumar, R. Photocatalytic Activity Enhancement of Titanium Dioxide Nanoparticles: Degradation of Pollutants in Wastewater. In SpringerBriefs in Green Chemistry for Sustainability, Sharma, S. K., Ed.; Springer: New York, 2016.; pp 1–23.
  • Wang, X.; Feng, X.; Shang, J. Efficient Photoelectrochemical Oxidation of Rhodamine B on Metal Electrodes without Photocatalyst or Supporting Electrolyte. Front. Environ. Sci. Eng. 2018, 12, 1–6. doi: 10.1007/s11783-018-1061-8.
  • Gnaser, H.; Huber, B.; Ziegler, C. Nanocrystalline TiO2 for Photocatalysis. In Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H. S., Ed.; American Scientific Publishers: USA, 2004; Vol. 6, pp 505–535.
  • Makal, P.; Das, D. Self-doped TiO2 Nanowires in TiO2-B Single Phase, TiO2-B/anatase and TiO2-anatase/rutile Heterojunctions Demonstrating Individual Superiority in Photocatalytic Activity under Visible and UV Light. Appl. Surf. Sci. 2018, 455, 1106–1115. DOI:10.1016/j.apsusc.2018.06.055.
  • Mobtaker, H. G.; Yousefi, T.; Arabieh, M. Enhancing the Photocatalytic Activity of Nano Nd-TiO2@SiO2 by Coupled Systems. J. Nanostruct. 2018, 8, 31–36. DOI:10.22052/JNS.2018.01.004.
  • Sreedhar, M.; Reddy, I. N.; Reddy, C. V.; Shim, J.; Brijitta, J. Highly Photostable Zn-doped TiO2 Thin Film Nanostructures for Enhanced Dye Degradation Deposited by Sputtering Method. Mat. Sci. Semicon. Proc. 2018, 85, 113–121. DOI:10.1016/j.mssp.2018.06.005.
  • Junlabhut, P.; Wattanawikkam, C.; Mekprasart, W.; Pecharapa, W. Effect of Metal (Mn, Co, Zn, Ni) Doping on Structural, Optical and Photocatalytic Properties of TiO2 Nanoparticles Prepared by Sonochemical Method. J. Nanosci. Nanotechnol. 2018, 18, 7302–7309. DOI:10.1166/jnn.2018.15717.
  • Duan, Z.; Zhu, Y.; Ren, P. R.; Jia, J.; Yang, S.; Zhao, G.; Xie, Y.; Zhang, J. Non-UV Activated Superhydrophilicity of Patterned Fe-doped TiO2 Film for Anti-Fogging and Photocatalysis. Appl. Surf. Sci. 2018, 452, 165–173. DOI:10.1016/j.apsusc.2018.05.029.
  • Unwiset, P.; Makdee, A.; Chanapattharapol, K. C.; Kidkhunthod, P. Effect of Cu Addition on TiO2 Surface Properties and Photocatalytic Performance: X-ray Absorption Spectroscopy Analysis. J. Phys. Chem. Solids 2018, 120, 231–240. DOI:10.1016/j.jpcs.2018.05.003.
  • Ali, I.; Kim, J. O. Visible-light-assisted Photocatalytic Activity of bismuth-TiO2 Nanotube Composites for Chromium Reduction and Dye Degradation. Chemosphere 2018, 207, 285–292. DOI:10.1016/j.chemosphere.2018.05.075.
  • Zhang, C.; Liu, Y.; Zhou, J.; Jin, W.; Chen, W. Tunability of Photo-catalytic Selectivity of B-doped Anatase TiO2 Microspheres in the Visible Light. Dyes Pigm. 2018, 156, 213–218. DOI:10.1016/j.dyepig.2018.04.011..
  • Ren, K.; Gan, Y. X.; Young, T. C.; Moutassem, Z. M.; Zhang, L. Photoelectrochemical Responses of Doped and Coated Titanium Dioxide Composite Nanotube Anodes. Compos. Part B-Eng. 2013, 52, 292–302. DOI:10.1016/j.compositesb.2013.04.001.
  • Gilja, V.; Novakovic, K.; Travas-Sejdic, J.; Hrnjak-Murgic, Z.; Rokovic, M. K.; Zic, M. Stability and Synergistic Effect of Polyaniline/TiO2 Photocatalysts in Degradation of Azo Dye in Wastewater. Nanomaterials 2017, 7, 1–16. DOI:10.3390/nano7120412.
  • Li, Q.; Zhang, C.; Li, J. Photocatalytic and Microwave Absorbing Properties of Polypyrrole/Fe-doped TiO2 Composite by in Situ Polymerization Method. J. Alloy. Compd. 2011, 509, 1953–1957. DOI:10.1016/j.jallcom.2010.10.099.
  • Katancic, Z.; Gavran, I.; Smolkovic, J.; Hrnjak-Murgic, Z. Fly Ash Supported Photocatalytic Nanocomposite Poly(3,4-ethylenedioxythiophene)/TiO2 for Azo Dye Removal under Simulated Solar Irradiation. J. Appl. Polym. Sci. 2018, 35, 1–12. DOI:10.1002/app.46316.
  • Faisal, M.; Harraz, F. A.; Ismail, A. A.; El-Toni, A. M.; Al-Sayari, S. A.; Al-Hajry, A.; Al-Assiri, M. S. Polythiophene/mesoporous SrTiO3 Nanocomposites with Enhanced Photocatalytic Activity under Visible Light. Sep. Purif. Technol. 2018, 190, 33–44. DOI:10.1016/j.seppur.2017.08.037.
  • Yu, X. N.; Lu, Z. Y.; Wu, D.; Yu, P.; He, M.; Chen, T. T.; Shi, W. D.; Huo, P.; W.; Yan, Y. S.; Feng, Y. X. Heteropolyacid-chitosan/TiO2 Composites for the Degradation of Tetracycline Hydrochloride Solution. React. Kinet. Mech. Cat. 2014, 111, 347–360. DOI:10.1007/s11144-013-0631-9.
  • Sarmah, S.; Kumar, A. Photocatalytic Activity of polyaniline-TiO2 Nanocomposites. Indian J. Phys. 2011, 85, 713–726. DOI:10.1007/s12648-011-0071-1.
  • Dipak, P.; Tiwari, D. C.; Dwivedi, S. K.; Shami, T. C.; Dwivedi, P. K. Synthesis and Characterization Polymer Nanocomposite of PANI/TiO2(np)-Fe + 3 for Microwave Application. J. Mater. Sci: Mater. Electron. 2018, 29, 6439–6445. DOI:10.1007/s10854-018-8625-z.
  • Garg, A.; Singh, A.; Sangal, V. K.; Bajpai, P. K.; Garg, N. Synthesis, characterization and Anticancer Activities of Metal Ions Fe and Cu Doped and co-doped TiO2. New J. Chem. 2017, 41, 9931–9937. DOI:10.1039/C7NJ02098H.
  • Kalantari, K.; Kalbasi, M.; Sohrabi, M.; Royaee, S. J. Enhancing the Photocatalytic Oxidation of Dibenzothiophene Using Visible Light Responsive Fe and N co-doped TiO2 Nanoparticles. Ceram. Int. 2017, 43, 973–981. DOI:10.1016/j.ceramint.2016.10.028.
  • Koysuren, O.; Du, C.; Pan, N.; Bayram, G. Preparation and Comparison of Two Electrodes for Supercapacitors: Pani/CNT/Ni and Pani/Alizarin-Treated Nickel. J. Appl. Polym. Sci. 2009, 113, 1070–1081. DOI:10.1002/app.29924.
  • Koysuren, O.; Koysuren, H. N. Photocatalytic Activity of Polyvinyl Borate/titanium Dioxide Composites for UV Light Degradation of Organic Pollutants. J. Macromol. Sci. Part A-Pure Appl 2018, 55, 401–407. DOI:10.1080/10601325.2018.1453259.
  • Marami, M. B.; Farahmandjou, M.; Khoshnevisan, B. Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals. J. Electron. Mater. 2018, 47, 3741–3748. DOI:10.1007/s11664-018-6234-5.
  • Sahnoun, S.; Boutahala, M. Adsorption Removal of Tartrazine by Chitosan/polyaniline Composite: Kinetics and Equilibrium Studies. Int. J. Biol. Macromol. 2018, 114, 1345–1353. DOI:10.1016/j.ijbiomac.2018.02.146.
  • Bahrudin, N. N.; Nawi, M. A.; Ismail, W. I. N. W. Physical and Adsorptive Characterizations of Immobilized Polyaniline for the Removal of Methyl Orange Dye. Korean J. Chem. Eng. 2018, 35, 1450–1461. DOI:10.1007/s11814-018-0052-6.
  • Kalaiarasi, S.; Jose, M. Streptomycin Loaded TiO2 Nanoparticles: preparation, characterization and Antibacterial Applications. J. Nanostruct. Chem. 2017, 7, 47–53. DOI:10.1007/s40097-016-0213-2.
  • Cui, S.; Wang, J.; Wang, X. Fabrication and Design of a Toxic Gas Sensor Based on Polyaniline/titanium Dioxide Nanocomposite Film by Layer-by-layer Self-Assembly. RSC Adv. 2015, 5, 58211–58219. DOI:10.1039/C5RA06388D.
  • Ramesan, M. T.; Sampreeth, T. In Situ Synthesis of Polyaniline/Sm-doped TiO2 Nanocomposites: Evaluation of Structural, Morphological, Conductivity Studies and Gas Sensing Applications. J. Mater. Sci: Mater. Electron. 2018, 29, 4301–4311. DOI:10.1007/s10854-017-8377-1.
  • Zarrin, S.; Heshmatpour, F. Photocatalytic Activity of TiO2/Nb2O5/PANI and TiO2/Nb2O5/RGO as New Nanocomposites for Degradation of Organic Pollutants. J. Hazard. Mater. 2018, 351, 147–159. DOI:10.1016/j.jhazmat.2018.02.052.
  • Cui, W.; He, J.; Wang, H.; Hu, J.; Liu, L.; Liang, Y. Polyaniline Hybridization Promotes Photo-electro-catalytic Removal of Organic Contaminants over 3D Network Structure of rGH-PANI/TiO2 Hydrogel. Appl. Catal. B-Environ. 2018, 232, 232–245. DOI:10.1016/j.apcatb.2018.03.069.
  • Tumuluri, A.; Naidu, K. L.; K. C. J. Band, R. Gap Determination Using Tauc’s Plot for LiNbO3 Thin Films. Int. J. ChemTech. Res. 2014, 6, 3353–3356.
  • Sharma, G.; Bhogal, S.; Naushad, M.; Inamuddin, Kumar, A.; Stadler, F. J. Microwave Assisted Fabrication of La/Cu/Zr/carbon Dots Trimetallic Nanocomposites with Their Adsorptional vs Photocatalytic Efficiency for Remediation of Persistent Organic Pollutants. J. Photochem. Photobiol. A-Chem. 2017, 347, 235–243. DOI:10.1016/j.jphotochem.2017.07.001.
  • Piewnuan, C.; Wootthikanokkhan, J.; Ngaotrakanwiwat, P.; Meeyoo, V.; Chiarakorn, S. Preparation of TiO2/(TiO2–V2O5)/Polypyrrole Nanocomposites and a Study on Catalytic Activities of the Hybrid Materials under UV/Visible Light and in the Dark. Superlattices Microstruct. 2014, 75, 105–117. DOI:10.1016/j.spmi.2014.07.026.
  • Lee, S. Y.; Park, S. J. TiO2 Photocatalyst for Water Treatment Applications. J. Ind. Eng. Chem. 2013, 19, 1761–1769. DOI:10.1016/j.jiec.2013.07.012.
  • Brooms, T. J.; Otieno, B.; Onyango, M. S.; Ochieng, A. Photocatalytic Degradation of P-Cresol Using TiO2/ZnO Hybrid Surface Capped with Polyaniline. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 99–107. DOI:10.1080/10934529.2017.1377583.
  • Tanwar, R.; Kumar, S.; Mandal, U. K. Photocatalytic Activity of PANI/Fe-0 Doped BiOCl under Visible Light-degradation of Congo Red Dye. J. Photochem. Photobiol. A-Chem. 2017, 333, 105–116. DOI:10.1016/j.jphotochem.2016.10.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.