210
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and application of a novel 5-hydroxymethyl resorcinol diglycidyl ether-terminated polyurethane

, , , , , & show all
Pages 332-343 | Received 09 May 2019, Accepted 07 Nov 2019, Published online: 13 Dec 2019

References

  • Morancho, J. M.; Fernández-Francos, X.; Acebo, C.; Ramis, X.; Salla, J. M.; Serra, À. À. Thermal Curing of an Epoxy-Anhydride System Modified with Hyperbranched Poly (Ethylene Imine) s with Different Terminal Groups. J. Therm. Anal. Calorim. 2017, 127, 645–654. DOI: 10.1007/s10973-016-5376-z.
  • Gu, X.; Wei, H.; Huang, X.; Tang, X. Synthesis and Characterization of a Novel Curing Agent for Epoxy Resin Based on Phosphazene Derivatives. J. Macromol. Sci. Part A: Pure Appl. Chem 2010, 47, 828–832. DOI: 10.1080/10601325.2010.492257.
  • Pan, G.; Du, Z.; Zhang, C.; Li, C.; Yang, X.; Li, H. Effect of Structure of Bridging Group on Curing and Properties of bisphenol-A Based Novolac Epoxy Resins. Polym. J. 2007, 39, 478–487. DOI: 10.1295/polymj.PJ2006201.
  • Zhou, Y.; Ren, H.; Lu, H.; Meng, X. Synthesis of Epoxy Resin Based on Biphenyl Structure for Application in Carbon Fiber-Reinforced Composites. Polym. Plast. Technol. Eng 2013, 52, 581–585. DOI: 10.1080/03602559.2012.762523.
  • Xu, G.-R.; Xu, M.-J.; Li, B. Synthesis and Characterization of a Novel Epoxy Resin Based on Cyclotriphosphazene and Its Thermal Degradation and Flammability Performance. Polym. Degrad. Stab 2014, 109, 240–248. DOI: 10.1016/j.polymdegradstab.2014.07.020.
  • Unnikrishnan, K. P.; Thachil, E. T. The Modification of Commercial Epoxy Resin Using Cardanol-Formaldehyde Copolymers. Int. J. Polymer. Mater 2006, 55, 323–338. DOI: 10.1080/009140390945178.
  • Alhabill, F. N.; Ayoob, R.; Andritsch, T.; Vaughan, A. S. Effect of Resin/Hardener Stoichiometry on Electrical Behavior of Epoxy Networks. Ieee Trans. Dielect. Electr. Insul. 2017, 24, 3739–3749. DOI: 10.1109/TDEI.2017.006828.
  • Li, Y.; Gao, J.; Li, X.; Xu, X.; Lu, S. High Mechanical and Thermal Properties of Epoxy Composites with Liquid Crystalline Polyurethane Modified Graphene. Polymers 2018, 10, 485. DOI: 10.3390/polym10050485.
  • Fei, X.; Wei, W.; Zhao, F.; Zhu, Y.; Luo, J.; Chen, M.; Liu, X. Efficient Toughening of Epoxy–Anhydride Thermosets with a Biobased Tannic Acid Derivative. Acs Sustainable Chem. Eng. 2017, 5, 596–603. DOI: 10.1021/acssuschemeng.6b01967.
  • Zavareh, S.; Vahdat, G. Toughening of Brittle Epoxy Using Bitumen as a New Modifier. J. Reinf. Plast. Compos 2012, 31, 247–258. DOI: 10.1177/0731684412437266.
  • Liu, S.; Chevali, V. S.; Xu, Z.; Hui, D.; Wang, H. A Review of Extending Performance of Epoxy Resins Using Carbon Nanomaterials. Compos. Part B Eng 2018, 136, 197–214. DOI: 10.1016/j.compositesb.2017.08.020.
  • Nikafshar, S.; Zabihi, O.; Moradi, Y.; Ahmadi, M.; Amiri, S.; Naebe, M. Catalyzed Synthesis and Characterization of a Novel Lignin-Based Curing Agent for the Curing of High-Performance Epoxy Resin. Polymers 2017, 9, 266. DOI: 10.3390/polym9070266.
  • Nikafshar, S.; Zabihi, O.; Hamidi, S.; Moradi, Y.; Barzegar, S.; Ahmadi, M.; Naebe, M. A Renewable Bio-Based Epoxy Resin with Improved Mechanical Performance That Can Compete with DGEBA. Rsc Adv. 2017, 7, 8694–8701. DOI: 10.1039/C6RA27283E.
  • Mimura, K.; Ito, H.; Fujioka, H. Toughening of Epoxy Resin Modified with in Situ Polymerized Thermoplastic Polymers. Polymer 2001, 42, 9223–9233. DOI: 10.1016/S0032-3861(01)00460-8.
  • Wang, J.; Xue, Z.; Li, Y.; Li, G.; Wang, Y.; Zhong, W. H.; Yang, X. Synergistically Effects of Copolymer and Core-Shell Particles for Toughening Epoxy. Polymer 2018, 140, 39–46. DOI: 10.1016/j.polymer.2018.02.031.
  • Gunwant, D.; Sah, P. L.; Zaidi, M. G. H. Morphology and Micromechanics of Liquid Rubber Toughened Epoxies. e-Polymers 2018, 18, 511–527. DOI: 10.1515/epoly-2018-0141.
  • Bagheri, R.; Marouf, B. T.; Pearson, R. A. Rubber-Toughened Epoxies: A Critical Review. Polym. Rev 2009, 49, 201–225. DOI: 10.1080/15583720903048227.
  • Müller, M.; Valášek, P.; Rudawska, A.; Chotěborský, R. Effect of Active Rubber Powder on Structural Two-Component Epoxy Resin and Its Mechanical Properties. J. Adhes. Sci. Technol 2018, 32, 1531–1547. DOI: 10.1080/01694243.2018.1428040.
  • Ren, X.; Tu, Z.; Wang, J.; Jiang, T.; Yang, Y.; Shi, D.; Mai, Y. W.; Shi, H.; Luan, S.; Hu, G. H. Critical Rubber Layer Thickness of Core-Shell Particles with a Rigid Core and a Soft Shell for Toughening of Epoxy Resins without Loss of Elastic Modulus and Strength. Compos. Sci. Technol 2017, 153, 253–260. DOI: 10.1016/j.compscitech.2017.10.027.
  • Unnikrishnan, K. P.; Thachil, E. T. Studies on the Modification of Commercial Epoxy Resin Using Cardanol-Based Phenolic Resins. J. Elastomers. Plast 2008, 40, 271–286. DOI: 10.1177/0095244307086712.
  • Bakar, M.; Duk, R.; Przybyłek, M.; Kostrzewa, M. Mechanical and Thermal Properties of Epoxy Resin Modified with Polyurethane. J. Reinf. Plast. Compos 2009, 28, 2107–2118. DOI: 10.1177/0731684408091703.
  • Ratna, D.; Banthia, A. K. Toughened Epoxy Adhesive Modified with Acrylate Based Liquid Rubber. Polym. Int. 2000, 49, 281–287. DOI: 10.1002/(SICI)1097-0126(200003)49:3<281::AID-PI353>3.3.CO;2-6.
  • Zhou, W.; Zuo, J. Mechanical, Thermal and Electrical Properties of Epoxy Modified with a Reactive Hydroxyl-Terminated Polystyrene-Butadiene Liquid Rubber. J. Reinf. Plast. Compos 2013, 32, 1359–1369. DOI: 10.1177/0731684413489852.
  • Dong, L.; Zhou, W.; Sui, X.; Wang, Z.; Wu, P.; Zuo, J.; Cai, H.; Liu, X. (2017). Thermal, Mechanical, and Dielectric Properties of Epoxy Resin Modified Using Carboxyl-Terminated Polybutadiene Liquid Rubber. J. Elastomers. Plast 2017, 49, 281–297. DOI: 10.1177/0095244316653261.
  • Gupta, A.; Singhal, R.; Nagpal, A. K. Reactive Blends of Epoxy Resin (DGEBA) Crosslinked by Anionically Polymerized Polycaprolactam: Process of Epoxy Cure and Kinetics of Decomposition. J. Appl. Polym. Sci. 2004, 92, 687–697. DOI: 10.1002/app.13656.
  • Akram, N.; Zia, K. M.; Sattar, R.; Tabassum, S.; Saeed, M. Thermomechanical Investigation of Hydroxyl‐Terminated Polybutadiene‐Based Linear Polyurethane Elastomers. J. Appl. Polym. Sci. 2019, 136, 47289. DOI: 10.1002/app.47289.
  • He, X.; Xu, X.; Wan, Q.; Bo, G.; Yan, Y. Synthesis and Characterization of Dimmer-Acid-Based Nonisocyanate Polyurethane and Epoxy Resin Composite. Polymers 2017, 9, 649. DOI: 10.3390/polym9120649.
  • Sun, J.; Fang, H.; Wang, H.; Yang, S.; Xiao, S.; Ding, Y. Waterborne Epoxy-Modified Polyurethane-Acrylate Dispersions with Nano-Sized Core-Shell Structure Particles: synthesis, Characterization, and Their Coating Film Properties. J. Polym. Eng 2017, 37, 113–123. DOI: 10.1515/polyeng-2016-0003.
  • Xiahou, G.; Liu, W.; Yan, Z.; Su, K.; Wang, H. Synthesis and Properties of Polyurethanes Graft Modified by Long Polydimethylsiloxane Side Chain. J. Macromol. Sci. Part A: Pure Appl. Chem 2014, 51, 966–975. DOI: 10.1080/10601325.2014.967087.
  • Wu, T.; Liu, Y.; Li, N.; Huang, G. W.; Qu, C. B.; Xiao, H. M. Cryogenic Mechanical Properties of Epoxy Resin Toughened by Hydroxyl-Terminated Polyurethane. Polym. Test 2019, 74, 45–56. DOI: 10.1016/j.polymertesting.2018.11.048.
  • Ban, J. F.; Lu, S. R.; Guo, D.; Liu, K.; Luo, C. X. Thermomechanical Properties and Morphology of Liquid Crystalline Polyurethane/Epoxy Resin Composites. Amr. 2011, 194-196, 1421–1425. DOI: 10.4028/www.scientific.net/AMR.194-196.1421.
  • Reghunadhan, A.; Datta, J.; Kalarikkal, N.; Thomas, S. Development of Nanoscale Morphology and Role of Viscoelastic Phase Separation on the Properties of Epoxy/Recycled Polyurethane Blends. Polymer 2017, 117, 96–106. DOI: 10.1016/j.polymer.2017.04.030.
  • Zou, Z.-P.; Liu, X.-B.; Wu, Y.-P.; Tang, B.; Chen, M.; Zhao, X.-L. Hyperbranched Polyurethane as a Highly Efficient Toughener in Epoxy Thermosets with Reaction-Induced Microphase Separation. Rsc Adv. 2016, 6, 18060–18070. DOI: 10.1039/C5RA21168A.
  • Liu, H.; Wang, X.; Wu, D. Novel Cyclotriphosphazene-Based Epoxy Compound and Its Application in Halogen-Free Epoxy Thermosetting Systems: Synthesis, Curing Behaviors, and Flame Retardancy. Polym. Degrad. Stab 2014, 103, 96–112. DOI: 10.1016/j.polymdegradstab.2013.02.008.
  • Liu, Z.; Zhang, G.; Sun, H.; Jiang, H.; Zhao, C.; Xu, D.; Liu, H.; Sun, X.; Na, H. Preparation, Characterization and Thermal Properties of Tetramethylbisphenol F Epoxy Resin and Mixed Systems. Polym. Int. 2012, 61, 565–570. DOI: 10.1002/pi.3205.
  • Xu, K.; Chen, M.; Zhang, K.; Hu, J. Synthesis and Characterization of Novel Epoxy Resin Bearing Naphthyl and Limonene Moieties, and Its Cured Polymer. Polymer 2004, 45, 1133–1140. DOI: 10.1016/j.polymer.2003.12.035.
  • Dhevi, D. M.; Prabu, A. A.; Kim, H.; Pathak, M. Studies on the Toughening of Epoxy Resin Modified with Varying Hyperbranched Polyester-Toluene Diisocyanate Content. J. Polym. Res 2014, 21, 503. DOI: 10.1007/s10965-014-0503-7.
  • Wang, L.; Liang, Y.; Yu, Q.; Chen, S.; Zhang, J.; Miao, M.; Zhang, D. Synthesis of Epoxy-Ended Hyperbranched Polyesters with Reinforcing and Toughening Function for Diglycidyl Ether of bisphenol-A. Polym. Compos. 2018, 39, E2046–E2055. DOI: 10.1002/pc.24443.
  • Zhang, L.; Jiao, H.; Jiu, H.; Chang, J.; Zhang, S.; Zhao, Y. Thermal, Mechanical and Electrical Properties of Polyurethane/(3-Aminopropyl) Triethoxysilane Functionalized Graphene/Epoxy Resin Interpenetrating Shape Memory Polymer Composites. Compos. A. Appl. Sci. Manuf 2016, 90, 286–295. DOI: 10.1016/j.compositesa.2016.07.017.
  • Wang, X.; Shen, Y.; Lai, X. Micromorphology and Mechanism of Polyurethane/Polyacrylate Membranes Modified with Epoxide Group. Prog. Org. Coat 2014, 77, 268–276. DOI: 10.1016/j.porgcoat.2013.09.013.
  • Li, X.; Fei, G.; Wang, H. Mechanical and Surface Properties of Membranes Prepared from Waterborne Cationic Hydroxyl-Terminated Polydimethylsiloxane/Polyurethane Surfactant-Free Micro-Emulsion. J. Appl. Polym. Sci. 2006, 100, 40–46. DOI: 10.1002/app.22524.
  • Ricciardi, M. R.; Papa, I.; Langella, A.; Langella, T.; Lopresto, V.; Antonucci, V. Mechanical Properties of Glass Fibre Composites Based on Nitrile Rubber Toughened Modified Epoxy Resin. Compos. Part B Eng 2018, 139, 259–267. DOI: 10.1016/j.compositesb.2017.11.056.
  • Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Bio-Based Tri-Functional Epoxy Resin (TEIA) Blend Cured with Anhydride (MHHPA) Based Cross-Linker: Thermal, Mechanical and Morphological Characterization. J. Macromol. Sci. Part A: Pure Appl. Chem 2018, 55, 496–506. DOI: 10.1080/10601325.2018.1470468.
  • Fang, C.; Li, N.; Liu, Y.; Lu, G. Toughening Epoxy Acrylate with Polyurethane Acrylates and Hyper-Branched Polyester in Three Dimensional Printing. Mater. Res. Express 2018, 5, 055307. DOI: 10.1088/2053-1591/aac36f.
  • Ma, C.; Qiu, S.; Wang, J.; Sheng, H.; Zhang, Y.; Hu, W.; Hu, Y. Facile Synthesis of a Novel Hyperbranched Poly (Urethane-Phosphine Oxide) as an Effective Modifier for Epoxy Resin. Polym. Degrad. Stab 2018, 154, 157–169. DOI: 10.1016/j.polymdegradstab.2018.05.021.
  • Luo, L.; Meng, Y.; Qiu, T.; Li, X. An Epoxy-Ended Hyperbranched Polymer as a New Modifier for Toughening and Reinforcing in Epoxy Resin. J. Appl. Polym. Sci. 2013, 130, 1064–1073. DOI: 10.1002/app.39257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.