343
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Surface microstructures and properties of thiol-epoxy/thiol-Si-methacrylate hybrid polymer networks prepared by UV-induced polymerization

, , &
Pages 355-362 | Received 13 Jun 2019, Accepted 16 Nov 2019, Published online: 09 Dec 2019

References

  • Lin, Z.; Goddard, J. Photo-Curable Metal-Chelating Coatings Offer a Scalable Approach to Production of Antioxidant Active Packaging. J. Food Sci. 2018, 83,367–376. DOI: 10.1111/17503841.14051.
  • Akiyama, H.; Okuyama, Y.; Fukata, T.; Kihara, H. Reversible Photocuring of Liquid Hexa-Anthracene Compounds for Adhesive Applications. J. Adhes. 2018, 94, 799–813. DOI: 10.1080/00218464.2017.1383244.
  • Huang, Y. S.; Huang, H. H. Effects of Clinical Dental Implant Abutment Materials and Their Surface Characteristics on Initial Bacterial Adhesion. Rare Met. 2019, 38, 512. DOI: 10.1007/s12598-019-01219-0.
  • Liang, Q.; Zhang, L.; Xiong, Y.; Wu, Q.; Tang, H. A Facile Method to Prepare a Polyethylene Glycol Modified Polysilane as a Waterborne Photoini-Tiator. J. Photochem. Photobiol. A Chem. 2015, 299, 9–17. 2014.11.006. DOI: 10.1016/j.jphotochem.
  • Gao, L.; Li, X.; Wang, Y.; Zhu, W.; Shen, Z.; Li, X. Injectable Thiol-Epoxy “Click” Hydrogels. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2651–2655. DOI: 10.1002/pola.28156.
  • Truc, H. C.; Fangze, L.; Yuxuan, C.; Coughlin, K. A.; Eben, A. Thiol-Epoxy “Click” Chemistry to Engineer Cytocompatible Peg-Based Hydrogel for Sirna-Mediated Osteogenesis of hMSCs. ACS Appl. Mater. Interfaces 2018, 10, 25936–25942. DOI: 10.1021/acsami.8b07167.
  • Zhao, Y. H.; Vuluga, D.; Lecamp, L.; Burel, F. Photoinitiated Thiol-Epoxy Addition for the Preparation of Photoinduced Self-Healing Fatty Coatings. RSC Adv. 2016, 6, 32098–32105. DOI: 10.1039/C6RA03693G.
  • Chao, M.; Qiu, S.; Wang, J.; Sheng, H.; Yi, Z.; Hu, W.; et al. Facile Synthesis of a Novel Hyperbranched Poly(Urethane-Phosphine Oxide) as an Effective Modifier for Epoxy Resin. Polym. Degrad. Stabil. 2018, 154, 157–169. DOI: 10.1016/j.polymdegradstab.2018.05.021.
  • De, S.; Khan, A. Efficient Synthesis of Multifunctional Polymers via Thiol-Epoxy “Click” Chemistry. Chem. Commun. 2012, 48, 3130–3132. DOI: 10.1039/c2cc30434a.
  • Lin, H.; Ou, J.; Liu, Z.; Wang, H.; Dong, J.; Zou, H. Thiol-Epoxy Click Polymerization for Preparation of Polymeric Monoliths with Well-Defined 3D Framework for Capillary Liquid Chromatography. Anal. Chem. 2015, 87, 3476–3483. DOI: 10.1021/acs.analchem.5b00006.
  • Carlborg, C. F.; Vastesson, A.; Liu, Y.; Wouter, V. D. W.; Johansson, M.; Haraldsson, T. Functional Off-Stoichiometry Thiol-Ene-Epoxy Thermosets Featuring Temporally Controlled Curing Stages via an UV/UV Dual Cure Process. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 2604–2615. 27276. DOI: 10.1002/pola.
  • Jin, K.; Wilmot, N.; Heath, W. H.; Torkelson, J. M. Phase-Separated Thiol-Epoxy-Acrylate Hybrid Polymer Networks with Controlled Cross-Link Density Synthesized by Simultaneous Thiol-Acrylate and Thiol-Epoxy Click Reactions. Macromolecules 2016, 49, 4115–4123. DOI: 10.1021/acsmacromol.6b00141.
  • Zhang, J.; Li, L.; Guo, R.; Zhou, H.; Li, Z.; Chen, G.; Zhou, Z.; Li, Q. Preparation of Novel UV-Cured Methacrylate Hybrid Materials with High Thermal Stability via Thiol-Ene Photopolymerization. J. Mater. Sci. 2019, 54, 5877–5897. DOI: 10.1007/s10853-018-3157-8.
  • Stuparu, M. C.; Khan, A. Thiol-Epoxy “Click” Chemistry: Application in Preparation and Postpolymerization Modification of Polymers. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3057–3070. DOI: 10.1002/pola.28195.
  • Fahem, Z.; Bauhofer, W. Thiol-Ene Polymer Based Fast Photo-Curable Gate Insulator for Organic Field Effect Transistors. Microelectron. Eng. 2013, 105, 74–76. 12.022. DOI: 10.1016/j.mee.2012.
  • Kawana, M.; Takahashi, J-i.; Yasui, S.; Tomita, Y. Characterization of Volume Holographic Recording in Photopolymerizable Nanoparticle-(Thiol-Ene) Polymer Composites at 404 nm. J. Appl. Phys. 2015, 117, 053105. DOI: 10.1063/1.4907387.
  • Carioscia, J. A.; Lu, H.; Stanbury, J. W.; Bowman, C. N. Thiol-Ene Oligomers as Dental Restorative Materials. Dent. Mater. 2005, 21, 1137–1143. DOI: 10.1016/j.dental.2005.04.002.
  • Carioscia, J. A.; Stansbury, J. W.; Bowman, C. N. Evaluation and Control of Thiol-Ene/Thiol-Epoxy Hybrid Networks. Polymer 2007, 48, 1526–1532. DOI: 10.1016/j.polymer.2007.01.044.
  • Cheng, J.; Cao, Y.; Jiang, S.; Gao, Y.; Nie, J.; Sun, F. Synthesis and Performances of UV-Curable Polysiloxane-Polyether Block Polyurethane Acrylates for PVC Leather Finishing Agents. Ind. Eng. Chem. Res. 2015, 54, 5635–5642.
  • Chruściel, J. J.; Leśniak, E. Modification of Epoxy Resins with Functional Silanes, Polysiloxanes, Silsesquioxanes, Silica and Silicates. Prog. Polym. Sci. 2015, 41, 67–121. DOI: 10.1016/j.progpolymsci.201408.001.
  • Fernández-Francos, X.; Konuray, A. O.; Belmonte, A.; Silvia, D. L. F.; Serra, À.; Ramis, X. Sequential Curing of off-Stoichiometric Thiol-Epoxy Thermosets with a Custom-Tailored Structure. Polym. Chem. 2016, 7, 2280–2290. DOI: 10.1039/C6PY00099A.
  • Foix, D.; Ramis, X.; Ferrando, F.; Serra, A. Improvement of Epoxy Thermosets Using a Thiol-Ene Based Polyester Hyperbranched Polymer as Modifier. Polym. Int. 2012, 61, 727–734. DOI: 10.1002/pi.3230.
  • Chen, C.; Liu, J. C.; Sun, F.; Stansbury, J. W. Tuning Surface Microstructure and Gradient Property of Polymer by Photopolymerizable Polysiloxane-Modified Nanogels. RSC Adv. 2014, 4, 28928–28936. DOI: 10.1039/C4R.A02176B.
  • Cheng, J.; Li, M.; Cao, Y.; Gao, Y.; Liu, J.; Sun, F. Synthesis and Properties of Photopolymerizable Bifunctional Polyether-Modified Polysiloxane Polyurethane Acrylate Prepolymer. J. Adhes. Sci. Technol. 2016, 30, 2–12. DOI: 10.1080/01694243.20151087255.
  • Cengiz, N.; Rao, J.; Sanyal, A.; Khan, A. Designing Functionalizable Hydrogels through Thiol-Epoxy Coupling Chemistry. Chem. Commun. 2013, 49, 11191–11193. DOI: 10.1039/c3cc45859h.
  • Tsai, C.; Wu, K.; Yang, C.; Wang, G. Adamantane-Based Epoxy Resin and Siloxane-Modified Adamantane-Based Epoxy Resin: Characterization of Thermal, Dielectric and Optical Properties. React. Funct. Polym. 2015, 91–92, 11–18. DOI: 10.1016/j.reactfunctpolym.2015.04.002.
  • Byczyński, Ł.; Dutkiewicz, M.; Maciejewski, H. Synthesis and Properties of High-Solids Hybrid Materials Obtained from Epoxy Functional Urethanes and Siloxanes. Prog. Org. Coat. 2015, 84, 59–69. DOI: 10.1016/j.porgcoat.
  • Gadwal, I.; Stuparu, M. C.; Khan, A. Homopolymer Bifunctionalization through Sequential Thiol–Epoxy and Esterification Reactions: An Optimization, Quantification, and Structural Elucidation Study. Polym. Chem. 2015, 6, 1393–1404. DOI: 10.1039/C4PY01453G.
  • Jian, Y.; He, Y.; Sun, Y.; Yang, H.; Yang, W.; Nie, J. Thiol-Epoxy/Thiol-Acrylate Hybrid Materials Synthesized by Photopolymerization. J. Mater. Chem. C 2013, 1, 4481–4489. DOI: 10.1039/c3tc30360h.
  • Mcnair, O. D.; Brent, D. P.; Sparks, B. J.; Patton, D. L.; Savin, D. A. Sequential Thiol Click Reactions: Formation of Ternary Thiourethane/Thiol-Ene Networks with Enhanced Thermal and Mechanical Properties. ACS Appl. Mater. Interfaces 2014, 6, 6088–6097. 405138e. DOI: 10.1021/am.
  • Hwang, J.; Lee, D. G.; Yeo, H.; Rao, J.; Zhu, Z.; Shin, J.; Jeong, K.; Kim, S.; Jung, H. W.; Khan, A. Proton Transfer Hydrogels: Versatility and Applications. J. Am. Chem. Soc. 2018, 140, 6700–6709. DOI: 10.1021/jacs.8b03514.
  • Mcnair, O. D.; Sparks, B. J.; Janisse, A. P.; Brent, D. P.; Patton, D. L.; Savin, D. A. Highly Tunable Thiol-Ene Networks via Dual Thiol Addition. Macromolecules 2013, 46, 5614–5621. DOI: 10.1021/ma400748h.
  • Cramer, N. B.; Bowman, C. N. Kinetics of Thiol-Ene and Thiol-Acrylate Photopolymerizations with Real-Time Fourier Transform Infrared. J. Polym. Sci. A Polym. Chem. 2001, 39, 3311–3319. DOI: 10.1002/pola.1314.
  • Chen, C.; Li, M.; Gao, Y.; Nie, J.; Sun, F. A Study of Nanogels with Different Polysiloxane Chain Lengths for Photopolymerization Stress Reduction and Modification of Polymer Network Properties. RSC Adv. 2015, 5, 33729–33736. DOI: 10.1039/C5RA02394G.
  • Yu, Y.; Liao, B.; Li, G.; Jiang, S.; Sun, F. Synthesis and Properties of Photosensitive Silicone-Containing Polyurethane Acrylate for Leather Finishing Agent. Ind. Eng. Chem. Res. 2014, 53, 564–571. DOI: 10.1021/ie403534f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.