908
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery

, , , , &
Pages 379-387 | Received 08 Oct 2019, Accepted 28 Nov 2019, Published online: 12 Dec 2019

References

  • Pareek, A.; Maheshwari, S.; Cherlo, S.; Thavva, R. S. R.; Runkana, V. Modeling Drug Release through Stimuli Responsive Polymer Hydrogels. Int. J. Pharm. 2017, 532, 502–510. DOI: 10.1016/j.ijpharm.2017.09.001.
  • Wang, S.; Attah, R.; Li, J.; Chen, Y.; Chen, R. A pH-Responsive Amphiphilic Hydrogel Based on Pseudopeptides and Poly(Ethylene Glycol) for Oral Delivery of Hydrophobic Drugs. ACS Biomater. Sci. Eng. 2018, 4, 4236–4243. DOI: 10.1021/acsbiomaterials.8b01040.
  • Janićijević, Ž.; Ninkov, M.; Kataranovski, M.; Radovanović, F. Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite İmplant for Controlled Delivery of Cationic Drugs. Macromol. Biosci. 2019, 19, 1800322. DOI: 10.1002/mabi.201800322.
  • Ullah, K.; Khan, S. A.; Murtaza, G.; Sohail, M.; Azizullah; Manan, A.; Afzal, A. Gelatin-Based Hydrogels as Potential Biomaterials for Colonic Delivery of Oxaliplatin. Int. J. Pharm. 2019, 556, 236–245. DOI: 10.1016/j.ijpharm.2018.12.020.
  • Mirzaie, Z.; Reisi-Vanani, A.; Barati, M. Polyvinyl Alcohol-Sodium Alginate Blend, Composited with 3D-Graphene Oxide as a Controlled Release System for Curcumin. J. Drug Deliv. Sci. Technol. 2019, 50, 380–387. DOI: 10.1016/j.jddst.2019.02.005.
  • Gao, D.; Duan, L.; Wu, M.; Wang, X.; Sun, Z.; Zhang, Y.; Li, Y.; He, P. Preparation of Thermo/Redox/pH-Stimulative Poly(N-isopropylacrylamide-co-N,N’-dimethylaminoethyl methacrylate) Nanogels and Their DOX Release Behaviors. J. Biomed. Mater. Res. 2019, 107, 1195–1203. DOI: 10.1002/jbm.a.36611.
  • Oktay, S.; Alemdar, N. Electrically Controlled Release of 5-Fluorouracil from Conductive Gelatin Methacryloyl-Based Hydrogels. J. Appl. Polym. Sci. 2019, 136, 46914. DOI: 10.1002/app.46914.
  • Ornell, K. J.; Lozada, D.; Phan, N. V.; Coburn, J. M. Controlling Methacryloyl Substitution of Chondroitin Sulfate: İnjectable Hydrogels with Tunable Long-Term Drug Release Profiles. J. Mater. Chem. B 2019, 7, 2151–2161. DOI: 10.1039/C8TB03020K.
  • Wan, X.; Beaudoin, J. J.; Vinod, N.; Min, Y.; Makita, N.; Bludau, H.; Jordan, R.; Wang, A.; Sokolsky, M.; Kabanov, A. V. Co-Delivery of Paclitaxel and Cisplatin in Poly(2-oxazoline) Polymeric Micelles: Implications for Drug Loading, Release, Pharmacokinetics and Outcome of Ovarian and Breast Cancer Treatments. Biomaterials 2019, 192, 1–14. DOI: 10.1016/j.biomaterials.2018.10.032.
  • Pentlavalli, S.; Chambers, P.; Sathy, B. N.; O'Doherty, M.; Chalanqui, M.; Kelly, D. J.; Haut-Donahue, T.; McCarthy, H. O.; Dunne, N. J. Simple Radical Polymerization of Poly(Alginate-Graft-N-Isopropylacrylamide) Injectable Thermoresponsive Hydrogel with the Potential for Localized and Sustained Delivery of Stem Cells and Bioactive Molecules. Macromol. Biosci. 2017, 17, 1700118. DOI: 10.1002/mabi.201700118.
  • Park, S. H.; Shin, H. S.; Park, S. N. A Novel pH-Responsive Hydrogel Based on Carboxymethyl Cellulose/2-Hydroxyethyl Acrylate for Transdermal Delivery of Naringenin. Carbohydr. Polym 2018, 200, 341–352. DOI: 10.1016/j.carbpol.2018.08.011.
  • Malik, N. S.; Ahmad, M.; Minhas, M. U.; Murtaza, G.; Khalid, Q. Polysaccharide Hydrogels for Controlled Release of Acyclovir: Development, Characterization and in Vitro Evaluation Studies. Polym. Bull. 2017, 74, 4311–4328. DOI: 10.1007/s00289-017-1952-z.
  • Shukla, S.; Shukla, A. Tunable Antibiotic Delivery from Gellan Hydogels. J. Mater. Chem. B 2018, 6, 6444–6458. DOI: 10.1039/C8TB00980E.
  • Uliniuc, A.; Hamaide, T.; Popa, M.; Băcăiță, S. Modified Starch-Based Hydrogels Cross-Linked with Citric Acid and Their Use as Drug Delivery Systems for Levofloxacin. Soft Mater 2013, 11, 483–493. DOI: 10.1080/1539445X.2012.710698.
  • Rudhrabatla, V. S. A. P.; Jalababu, R.; Rao, K. S. V. K.; Reddy, K. V. N. S. Fabrication and Characterisation of Curcumin Loaded pH Dependent Sodium Alginate-g-Poly(Acryloyl Phenylalanine)-Cl-Ethylene Glycol Vinyl Ether-co-Hydroxyethyl Acrylate Hydrogels and Their in-Vitro, in-Vivo and Toxicological Evaluation Studies. J. Drug Deliv. Sci. Technol. 2019, 51, 438–453. DOI: 10.1016/j.jddst.2019.03.020.
  • Jeong, H. J.; Nam, S. J.; Song, J. Y.; Park, S. N. Synthesis and Physicochemical Properties of pH-Sensitive Hydrogel Based on Carboxymethyl Chitosan/2-Hydroxyethyl Acrylate for Transdermal Delivery of Nobiletin. J. Drug Deliv. Sci. Technol. 2019, 51, 194–203. DOI: 10.1016/j.jddst.2019.02.029.
  • Ahmadian, Y.; Bakravi, A.; Hashemi, H.; Namazi, H. Synthesis of Polyvinyl Alcohol/CuO Nanocomposite Hydrogel and İts Application as Drug Delivery Agent. Polym. Bull. 2019, 76, 1967–1983. DOI: 10.1007/s00289-018-2477-9.
  • Delplace, V.; Ortin-Martinez, A.; Tsai, E. L. S.; Amin, A. N.; Wallace, V.; Shoichet, M. S. Controlled Release Strategy Designed for Intravitreal Protein Delivery to the Retina. J. Control. Release 2019, 293, 10–20. DOI: 10.1016/j.jconrel.2018.11.012.
  • Kim, G.; Kim, H. J.; Noh, H. Influence of Solution pH on Drug Release from Ionic Hydrogel Lens. Macromol. Res. 2019, 27, 191–197. DOI: 10.1007/s13233-019-7050-3.
  • Ilgin, P.; Ozay, H.; Ozay, O. A New Dual Stimuli Responsive Hydrogel: Modeling Approaches for the Prediction of Drug Loading and Release Profile. Eur. Polym. J. 2019, 113, 244–253. DOI: 10.1016/j.eurpolymj.2019.02.003.
  • Buwalda, S. J.; Bethry, A.; Hunger, S.; Kandoussi, S.; Coudane, J.; Nottelet, B. Ultrafast in Situ Forming Poly(Ethylene Glycol)-Poly(Amido Amine) Hydrogels with Tunable Drug Release Properties via Controllable Degradation Rates. Eur. J. Pharm. Biopharm. 2019, 139, 232–239. DOI: 10.1016/j.ejpb.2019.04.006.
  • Xu, S. P.; Li, H.; Ding, H.; Fan, Z. X.; Pi, P. H.; Cheng, J.; Wen, X. F. Allylated Chitosan-Poly(N-Isopropylacrylamide) Hydrogel Based an a Functionalized Double Network for Controlled Drug Release. Carbohydr. Polym. 2019, 214, 8–14. DOI: 10.1016/j.carbpol.2019.03.008.
  • Dai, H. J.; Zhang, Y. H.; Ma, L.; Zhang, H.; Huang, H. H. Synthesis and Response of Pineapple Peel Carboxymethyl Cellulose-g-Poly (Acrylic Acid-co-Acrylamide)/Graphene Oxide Hydrogels. Carbohydr. Polym. 2019, 215, 366–376. DOI: 10.1016/j.carbpol.2019.03.090.
  • Larrañeta, E.; Domínguez-Robles, J.; Coogan, M.; Heaney, E.; Stewart, S. A.; Thakur, R. R. S.; Donnelly, R. F. Poly(Methyl Vinyl Ether-co-Maleic Acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromol. Res. 2019, 27, 396–403. DOI: 10.1007/s13233-019-7074-8.
  • Xie, C. X.; Tian, T. C.; Yu, S. T.; Li, L. pH-Sensitive Hydrogel Based on Carboxymethyl Chitosan/Sodium Alginate and Its Application for Drug Delivery. J. Appl. Polym. Sci. 2019, 136, 46911. DOI: 10.1002/app.46911.
  • Ozay, H.; Sahin, O.; Koc, O. K.; Ozay, O. The Preparation and Applications of Novel Phosphazene Crosslinked Thermo and pH Responsive Hydrogels. J. Ind. Eng. Chem. 2016, 43, 28–35. DOI: 10.1016/j.jiec.2016.07.043.
  • Asnani, G. P.; Bahekar, J.; Kokare, C. R. Development of Novel pH–Responsive Dual Crosslinked Hydrogel Beads Based on Portulaca Oleracea Polysaccharide-Alginate-Borax for Colon Specific Delivery of 5-Fluorouracil. J. Drug Deliv. Sci. Technol. 2018, 48, 200–208. DOI: 10.1016/j.jddst.2018.09.023.
  • Mozaffari, Z.; Hatamzadeh, M.; Massoumi, B.; Jaymand, M. Synthesis and Characterization of a Novel Stimuli-Responsive Magnetite Nanohydrogel Based on Poly(Ethylene Glycol) and Poly(N-İsopropylacrylamide) as Drug Carrier. J. Appl. Polym. Sci. 2018, 135, 46657. DOI: 10.1002/app.46657.
  • Wu, C.; Li, C.; Zhang, X.; Cheng, C.; Wang, J. An Alginate-Based Hydrogel Composite Obtained by UV Radiation and Its Release of 5-Fluorouracil. Polym. Bull. 2019, 76, 1167–1182. DOI: 10.1007/s00289-018-2435-6.
  • Fonseca, J. D.; Medeiros, S. D.; Alves, G. M.; dos Santos, D. M.; Campana-Filho, S. P.; dos Santos, A. M. Chitosan Microparticles Embedded with Multi-Responsive Poly(N-Vinylcaprolactam-co-Itaconic Acid-co-Ethylene-Glycol Dimethacrylate)-Based Hydrogel Nanoparticles as a New Carrier for Delivery of Hydrophobic Drugs. Colloids Surf. B 2019, 175, 73–83. DOI: 10.1016/j.colsurfb.2018.11.042.
  • Hamedi, H.; Moradi, S.; Hudson, S. M.; Tonelli, A. E. Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A Review. Carbohydr. Polym. 2018, 199, 445–460. DOI: 10.1016/j.carbpol.2018.06.114.
  • Pathania, D.; Verma, C.; Negi, P.; Tyagi, I.; Asif, M.; Kumar, N. S.; Al-Ghurabi, E. H.; Agarwal, S.; Gupta, V. K. Novel Nanohydrogel Based on Itaconic Acid Grafted Tragacanth Gum for Controlled Release of Ampicillin. Carbohydr. Polym. 2018, 196, 262–271. DOI: 10.1016/j.carbpol.2018.05.040.
  • Fan, X. C.; Wang, T.; Miao, W. K. The Preparation of pH-Sensitive Hydrogel Based on Host-Guest and Electrostatic Interactions and Its Drug Release Studies in Vitro. J. Polym. Res. 2018, 25, 215. DOI: 10.1007/s10965-018-1608-1.
  • Rasool, A.; Ata, S.; Islam, A.; Khan, R. U. Fabrication of Novel Carrageenan Based Stimuli Responsive Injectable Hydrogels for Controlled Release of Cephradine. RSC Adv. 2019, 9, 12282–12290. DOI: 10.1039/C9RA02130B.
  • Kenawy, E.; Kamoun, E. A.; Eldin, M. S. M.; El-Meligy, M. A. Physically Crosslinked Poly(Vinyl Alcohol)-Hydroxyethyl Starch Blend Hydrogel Membranes: Synthesis and Characterization for Biomedical Applications. Arab. J. Chem. 2014, 7, 372–380. DOI: 10.1016/j.arabjc.2013.05.026.
  • Jiang, G.; Qiu, W.; DeLuca, P. P. Preparation and in Vitro/in Vivo Evaluation of İnsulin-Loaded Poly(Acryloyl-Hydroxyethyl Starch)-PLGA Composite Microspheres. Pharm. Res. 2003, 20, 452–459.
  • Ozay, O. Synthesis and Characterization of Novel pH-Responsive Poly(2-Hydroxylethyl Methacrylate-co-N-Allylsuccinamic Acid) Hydrogels for Drug Delivery. J. Appl. Polym. Sci. 2014, 131, 39660 (1–10). DOI: 10.1002/app.39660.
  • Villa, C.; Martello, F.; Erratico, S.; Tocchio, A.; Belicchi, M.; Lenardi, C.; Torrente, Y. P(NIPAAM-co-HEMA) Thermoresponsive Hydrogels: An Alternative Approach for Muscle Cell Sheet Engineering. J. Tissue Eng. Regen. Med. 2017, 11, 187–196. DOI: 10.1002/term.1898.
  • Su, G. H.; Jia, L. Y.; Zhang, X. Q.; Zhang, Y. L.; Deng, P. C.; Zhou, T. Exploration of the Unusual Two-Step Volume Phase Transition of the Poly(N-Vinylcaprolactam-co-Hydroxyethyl Methacrylate) Hydrogel. Phys. Chem. Chem. Phys. 2018, 20, 23013–23024. DOI: 10.1039/C8CP02429D.
  • Moghadam, M. N.; Pioletti, D. P. Biodegradable HEMA-Based Hydrogels with Enhanced Mechanical Properties. J. Biomed. Mater. Res. 2016, 104, 1161–1169. DOI: 10.1002/jbm.b.33469.
  • Ibrahim, A. G.; Saleh, A. S.; Elsharma, E. M.; Metwally, E.; Siyam, T. Gamma Radiation-Induced Preparation of Poly(1-Vinyl-2-Pyrrolidone-co-Sodium Acrylate) for Effective Removal of Co(II), Ni(II), and Cu(II). Polym. Bull. 2019, 76, 303–322. DOI: 10.1007/s00289-018-2379-x.
  • Nam, H. G.; Nam, M. G.; Yoo, P. J.; Kim, J. H. Hydrogen Bonding-Based Strongly Adhesive Coacervate Hydrogels Synthesized Using Poly(N-Vinylpyrrolidone) and Tannic Acid. Soft Matter 2019, 15, 785–791. DOI: 10.1039/C8SM02144A.
  • Steichen, S.; O'Connor, C.; Peppas, N. A. Development of a P((MAA-co-NVP)-g-EG) Hydrogel Platform for Oral Protein Delivery: Effects of Hydrogel Composition on Environmental Response and Protein Partitioning. Macromol. Biosci. 2017, 17, 1600266. DOI: 10.1002/mabi.201600266.
  • Ganguly, S.; Das, N. C. Synthesis of a Novel pH Responsive Phyllosilicate Loaded Polymeric Hydrogel Based on Poly(Acrylic Acid-co-N-Vinylpyrrolidone) and Polyethylene Glycol for Drug Delivery: Modelling and Kinetics Study for the Sustained Release of an Antibiotic Drug. RSC Adv. 2015, 5, 18312–18327. DOI: 10.1039/C4RA16119J.
  • Oyane, A.; Kim, H.-M.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T. Preparation and Assessment of Revised Simulated Body Fluids. J. Biomed. Mater. Res. A 2003, 65, 188–195. DOI: 10.1002/jbm.a.10482.
  • Cooper, R. C.; Yang, H. Hydrogel-Based Ocular Drug Delivery Systems: Emerging Fabrication Strategies, Applications, and Bench-to-Bedside Manufacturing Considerations. J. Control. Release 2019, 306, 29–39. DOI: 10.1016/j.jconrel.2019.05.034.
  • Bagri, L. P.; Bajpai, J.; Bajpai, A. K. Evaluation of Starch Based Cryogels as Potential Biomaterials for Controlled Release of Antibiotic Drugs. Bull. Mater. Sci. 2011, 34, 1739–1748. DOI: 10.1007/s12034-011-0385-9.
  • Moin, A.; Hussain, T.; Gowda, D. V. Enteric Delivery of Diclofenac Sodium through Functionally Modified Poly(Acrylamide-Grafted-Ghatti Gum)-Based pH-Sensitive Hydrogel Beads: Development, Formulation and Evaluation. J. Young Pharm. 2017, 9, 525. DOI: 10.5530/jyp.2017.9.102.
  • Tatavarti, A. S.; Hoag, S. W. Microenvironmental pH Modulation Based Release Enhancement of a Weakly Basic Drug from Hydrophilic Matrices. J. Pharm. Sci. 2006, 95, 1459–1468. DOI: 10.1002/jps.20612.
  • Aderibigbe, B. A.; Ndwabu, S. Evaluation of Whey Protein Isolate-Graft-Carbopol-Polyacrylamide pH-Sensitive Composites for Controlled Release of Pamidronate. Polym. Bull. 2017, 74, 5129–5144. DOI: 10.1007/s00289-017-2008-0.
  • Ritger, P. L.; Peppas, N. A. A Simple Equation for Description of Solute Release: I. Fickian and non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. DOI: 10.1016/0168-3659(87)90034-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.