653
Views
15
CrossRef citations to date
0
Altmetric
Review

Rubber toughened epoxy-based nanocomposite: a promising pathway toward advanced materials

Pages 499-511 | Received 28 Dec 2019, Accepted 11 Feb 2020, Published online: 24 Feb 2020

References

  • Kaya, İ.; Gül, M.; Şenol, D. Synthesis and Characterization of Epoxy Resins Containing Imine Group and Their Curing Processes with Aromatic Diamine. J. Macromol. Sci. A. 2019, 56, 1–10. DOI: 10.1080/10601325.2019.1596747.
  • Chen, G.; Zhang, Q.; Hu, Z.; Wang, S.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Liquid Crystalline Epoxies Bearing Biphenyl Ether and Aromatic Ester Mesogenic Units: Synthesis and Thermal Properties. J. Macromol. Sci. A. 2019, 56, 484–495. DOI: 10.1080/10601325.2019.1581578.
  • Yan, L.; Zhang, B.; Wang, Y.; Zhou, C.; Li, R.; Luo, W.; Chen, Y.; Zou, H.; Liang, M. The Improvement of Thermal Stability and Adhesion of Silicone Rubber Composites Modified by Phenolic Epoxy Resin. J. Macromol. Sci. A. 2019, 56, 506–512. DOI: 10.1080/10601325.2019.1584858.
  • Wang, Y.; Chen, Z.; Yu, F. Preparation of Epoxy-Acrylic Latex Based on Bisphenol F Epoxy Resin. J. Macromol. Sci. A. 2018, 55, 205–212. DOI: 10.1080/10601325.2017.1410065.
  • Vijayan P, P.; Pionteck, J.; Thomas, S. Volume Shrinkage and Cure Kinetics in Carboxyl-Terminated Poly(Butadiene-co-Acrylonitrile)(CTBN) Modified Epoxy/Clay Nanocomposites. J. Macromol. Sci. A. 2015, 52, 353–359. DOI: 10.1080/10601325.2015.1018805.
  • Kong, X.; Yang, D.; Ni, Y.; Hao, J.; Guo, W.; Zhang, L. Enhanced Actuation Strains of Rubber Composites by Combined Covalent and Non-Covalent Modification of TiO2 Nanoparticles. Indus. Eng. Chem. Res. 2019, 58, 19890–19898. DOI: 10.1021/acs.iecr.9b03274.
  • Thomas, S., Sinturel, C., Thomas, R. Eds., Micro-and Nanostructured Epoxy/Rubber Blends; Wiley-VCH: Hoboken, 2014.
  • Bajpai, A.; Wetzel, B.; Klingler, A.; Friedrich, K. Mechanical Properties and Fracture Behavior of High‐Performance Epoxy Nanocomposites Modified with Block Polymer and Core–Shell Rubber Particles. J. Appl. Polym. Sci. 2020, 137, 48471. DOI: 10.1002/app.48471.
  • Jin, F. L.; Li, X.; Park, S. J. Synthesis and Application of Epoxy Resins: A Review. J. Indus. Eng. Chem. 2015, 29, 1–11. DOI: 10.1016/j.jiec.2015.03.026.
  • Deng, S.; Djukic, L.; Paton, R.; Ye, L. Thermoplastic–Epoxy Interactions and Their Potential Applications in Joining Composite Structures–a Review. Compos. A: Appl. Sci. Manuf. 2015, 68, 121–132. DOI: 10.1016/j.compositesa.2014.09.027.
  • May, C. A. Introduction to Epoxy Resins. In Epoxy Resins: Chemistry and Technology; CRC Press: Boca Raton, 2018.
  • Reis, P. N. B.; Ferreira, J. A. M.; Santos, P.; Richardson, M. O. W.; Santos, J. B. Impact Response of Kevlar Composites with Filled Epoxy Matrix. Compos. Struct. 2012, 94, 3520–3528. DOI: 10.1016/j.compstruct.2012.05.025.
  • Reis, P. N. B.; Ferreira, J. A. M.; Zhang, Z. Y.; Benameur, T.; Richardson, M. O. W. Impact Response of Kevlar Composites with Nanoclay Enhanced Epoxy Matrix. Compos. B: Eng. 2013, 46, 7–14. DOI: 10.1016/j.compositesb.2012.10.028.
  • Barabanova, A. I.; Lokshin, B. V.; Kharitonova, E. P.; Afanasyev, E. S.; Askadskii, A. A.; Philippova, O. E. Curing Cycloaliphatic Epoxy Resin with 4-Methylhexahydrophthalic Anhydride: Catalyzed vs. Uncatalyzed Reaction. Polymer. 2019, 178, 121590. DOI: 10.1016/j.polymer.2019.121590.
  • Qi, Y.; Jiang, D.; Ju, S.; Zhang, J.; Cui, X. Determining the Interphase Thickness and Properties in Carbon Fiber Reinforced Fast and Conventional Curing Epoxy Matrix Composites Using Peak Force Atomic Force Microscopy. Compos. Sci. Technol. 2019, 184, 107877. DOI: 10.1016/j.compscitech.2019.107877.
  • Jeon, I.; Lee, S. W.; Jho, J. Y. Compatibilizing Effect of Poly (Methyl Methacrylate-co-Maleic Anhydride) on the Morphology and Mechanical Properties of Polyketone/Polycarbonate Blends. Macromol. Res. 2019, 27, 1–6. DOI: 10.1007/s13233-019-7108-2..
  • Wu, S.; Guo, Q.; Peng, S.; Hameed, N.; Kraska, M.; Stühn, B.; Mai, Y.-W. Toughening Epoxy Thermosets with Block Ionomer Complexes: A Nanostructure–Mechanical Property Correlation. Macromolecules. 2012, 45, 3829–3840. DOI: 10.1021/ma300458y.
  • Liang, Y. L.; Pearson, R. A. The Toughening Mechanism in Hybrid Epoxy-Silica-Rubber Nanocomposites (HESRNs). Polymer. 2010, 51, 4880–4890. DOI: 10.1016/j.polymer.2010.08.052.
  • Liu, H. Y.; Wang, G. T.; Mai, Y. W.; Zeng, Y. On Fracture Toughness of Nano-Particle Modified Epoxy. Compos. B: Eng. 2011, 42, 2170–2175. DOI: 10.1016/j.compositesb.2011.05.014.
  • Li, B.; Zhang, X.; Qi, G.; Wang, X.; Zhang, J.; Han, P.; Ru, Y.; Qiao, J. A Rubber-Modified Epoxy Composite with Very High Toughness and Heat Resistance. Polym. Polym. Compos. 2019, 27, 582–586. DOI: 10.1177/0967391119854649.
  • Chruściel, J. J.; Leśniak, E. Modification of Epoxy Resins with Functional Silanes, Polysiloxanes, Silesquioxanes, Silica and Silicates. Prog. Polym. Sci. 2015, 41, 67–121. DOI: 10.1016/j.progpolymsci.2014.08.001.
  • Park, Y. T.; Qian, Y.; Chan, C.; Suh, T.; Nejhad, M. G.; Macosko, C. W.; Stein, A. Epoxy Toughening with Low Graphene Loading. Adv. Funct. Mater. 2015, 25, 575–585. DOI: 10.1002/adfm.201402553.
  • Collyer, A. A. Ed. Rubber Toughened Engineering Plastics; Springer Science & Business Media: Berlin, 2012.
  • Raouf, R. M.; Rahma, N. M.; Eweed, K. M. Mechanical and Morphological Properties of DGEBA/SiO2 Reinforced with Fiberglass at Room Temperature. IOP Conf. Ser.: Mater. Sci. Eng. 2018, 454, 012146. DOI: 10.1088/1757-899X/454/1/012146.
  • Tan, S. G.; Chow, W. S. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polym.-Plast. Technol. Eng. 2010, 49, 1581–1590. DOI: 10.1080/03602559.2010.512338.
  • Douglass, S. K.; Beaumont, P. W. R.; Ashby, M. F. A Model for the Toughness of Epoxy-Rubber Particlate Composites. J. Mater. Sci. 1980, 15, 1109–1123. DOI: 10.1007/BF00551799.
  • Puglia, D.; Al-Maadeed, M. A. S.; Kenny, J. M.; Thomas, S. Elastomer/Thermoplastic Modified Epoxy Nanocomposites: The Hybrid Effect of ‘Micro’and ‘Nano’scale. Mater. Sci. Eng.: R: Rep. 2017, 116, 1–29. DOI: 10.1016/j.mser.2017.03.001.
  • Chhetri, S.; Adak, N. C.; Samanta, P.; Mallisetty, P. K.; Murmu, N. C.; Kuila, T. Interface Engineering for the Improvement of Mechanical and Thermal Properties of Covalent Functionalized Graphene/Epoxy Composites. J. Appl. Polym. Sci. 2018, 135, 46124. DOI: 10.1002/app.46124.
  • Ramos, V. D.; Da Costa, H. M.; Soares, V. L.; Nascimento, R. S. Modification of Epoxy Resin: A Comparison of Different Types of Elastomer. Polym. Test. 2005, 24, 387–394. DOI: 10.1016/j.polymertesting.2004.09.010.
  • Cicala, G. Comparison of Epoxy/Rubber Blends with Other Toughening Strategies: Thermoplastic and Hyperbranched Modifiers. In Micro and Nanostructured Epoxy/Rubber Blends; Wiley-VCH Verlag GmbH & Co.: Hoboken, 2014.
  • Sprenger, S. Epoxy Resins Modified with Elastomers and Surface-Modified Silica Nanoparticles. Polymer. 2013, 54, 4790–4797. DOI: 10.1016/j.polymer.2013.06.011.
  • Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening Glassy Poly (Lactide) with Block Copolymer Micelles. ACS Macro Lett. 2016, 5, 359–364. DOI: 10.1021/acsmacrolett.6b00063.
  • Li, T.; Heinzer, M. J.; Redline, E. M.; Zuo, F.; Bates, F. S.; Francis, L. F. Microstructure and Performance of Block Copolymer Modified Epoxy Coatings. Prog. Org. Coat. 2014, 77, 1145–1154. DOI: 10.1016/j.porgcoat.2014.03.015.
  • Xu, J.; Howard, M. J.; Mittal, V.; Bates, F. S. Block Copolymer Micelle Toughened Isotactic Polypropylene. Macromolecules 2017, 50, 6421–6432. DOI: 10.1021/acs.macromol.7b01656.
  • Garate, H.; Morales, N. J.; Goyanes, S.; D’Accorso, N. B. Miscibility, Phase Separation, and Mechanism of Phase Separation of Epoxy/Block-Copolymer Blends. In Handbook of Epoxy Blends; Springer: New York City, 2016, pp 1–41.
  • Zhou, H. S.; Song, X. X.; Xu, S. A. Mechanical and Thermal Properties of Novel Rubber‐Toughened Epoxy Blend Prepared by in Situ Pre‐Crosslinking. J. Appl. Polym. Sci. 2014, 131. DOI: 10.1002/app.41110.
  • Xu, S. A.; Wang, G. T.; Mai, Y. W. Effect of Hybridization of Liquid Rubber and Nanosilica Particles on the Morphology, Mechanical Properties, and Fracture Toughness of Epoxy Composites. J. Mater. Sci. 2013, 48, 3546–3556. DOI: 10.1007/s10853-013-7149-4.
  • Kunz, S. C.; Beaumont, P. W. Low-Temperature Behaviour of Epoxy-Rubber Particulate Composites. J. Mater. Sci. 1981, 16, 3141–3152. DOI: 10.1007/BF00540323.
  • Turi, E. Ed. Thermal Characterization of Polymeric Materials; Elsevier: Amsterdam, 2012.
  • Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H.; Chen, Y.; Fox, B. Mechanical Property and Structure of Covalent Functionalised Graphene/Epoxy Nanocomposites. Sci. Rep. 2014, 4, 4375. DOI: 10.1038/srep04375.
  • Wang, C.; Zhao, M.; Li, J.; Yu, J.; Sun, S.; Ge, S.; Guo, X.; Xie, F.; Jiang, B.; Wujcik, E. K.; et al. Silver Nanoparticles/Graphene Oxide Decorated Carbon Fiber Synergistic Reinforcement in Epoxy-Based Composites. Polymer 2017, 131, 263–271. DOI: 10.1016/j.polymer.2017.10.049.
  • Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. DOI: 10.1021/ja807449u.
  • Das, T. K.; Prusty, S. Graphene-Based Polymer Composites and Their Applications. Polym.-Plast. Technol. Eng. 2013, 52, 319–331. DOI: 10.1080/03602559.2012.751410.
  • Wang, F.; Drzal, L. T.; Qin, Y.; Huang, Z. Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/Epoxy Composites by Incorporation of Graphene Nanoplatelets. Compos. A: Appl. Sci. Manuf. 2016, 87, 10–22. DOI: 10.1016/j.compositesa.2016.04.009.
  • Gong, L. X.; Zhao, L.; Tang, L. C.; Liu, H. Y.; Mai, Y. W. Balanced Electrical, Thermal and Mechanical Properties of Epoxy Composites Filled with Chemically Reduced Graphene Oxide and Rubber Nanoparticles. Compos. Sci. Technol. 2015, 121, 104–114. DOI: 10.1016/j.compscitech.2015.10.023.
  • Yu, Z.; Shi, Z.; Xu, H.; Ma, X.; Tian, M.; Yin, J. Green Chemistry: Co-Assembly of Tannin-Assisted Exfoliated Low-Defect Graphene and Epoxy Natural Rubber Latex to Form Soft and Elastic Nacre-like Film with Good Electrical Conductivity. Carbon. 2017, 114, 649–660. DOI: 10.1016/j.carbon.2016.12.049.
  • Kam, K. W.; Teh, P. L.; Osman, H.; Yeoh, C. K. Comparison Study: effect of un-Vulcanized and Vulcanized NR Content on the Properties of Two-Matrix Filled Epoxy/Natural Rubber/Graphene Nano-Platelets System. J. Polym. Res. 2018, 25, 15. DOI: 10.1007/s10965-017-1418-x.
  • Irez, A. B.; Miskioglu, I.; Bayraktar, E. Toughening Mechanisms on Recycled Rubber Modified Epoxy Based Composites Reinforced with Graphene Nanoplatelets. In Mechanics of Composite, Hybrid and Multifunctional Materials, Springer: New York City, 2019, Vol. 5, pp. 283–290.
  • Marouf, B. T.; Mai, Y. W.; Bagheri, R.; Pearson, R. A. Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects. Polym. Rev. 2016, 56, 70–112. DOI: 10.1080/15583724.2015.1086368.
  • Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P. M.; Cheng, H. M. Increasing the Electrical Conductivity of Carbon Nanotube/Polymer Composites by Using Weak Nanotube–Polymer Interactions. Carbon. 2010, 48, 3551–3558. DOI: 10.1016/j.carbon.2010.05.053.
  • Goh, P. S.; Ismail, A. F.; Ng, B. C. Directional Alignment of Carbon Nanotubes in Polymer Matrices: Contemporary Approaches and Future Advances. Compos. A: Appl. Sci. Manuf. 2014, 56, 103–126. DOI: 10.1016/j.compositesa.2013.10.001.
  • Said, Z.; Allagui, A.; Abdelkareem, M. A.; Alawadhi, H.; Elsaid, K. Acid-Functionalized Carbon Nanofibers for High Stability, Thermoelectrical and Electrochemical Properties of Nanofluids. J. Coll. Interface. Sci. 2018, 520, 50–57. DOI: 10.1016/j.jcis.2018.02.042.
  • Zhang, Q.; Wu, J.; Gao, L.; Liu, T.; Zhong, W.; Sui, G.; Zheng, G.; Fang, W.; Yang, X. Dispersion Stability of Functionalized MWCNT in the Epoxy–Amine System and Its Effects on Mechanical and Interfacial Properties of Carbon Fiber Composites. Mater. Des. 2016, 94, 392–402. DOI: 10.1016/j.matdes.2016.01.062.
  • Hsieh, T. H.; Kinloch, A. J.; Taylor, A. C.; Kinloch, I. A. The Effect of Carbon Nanotubes on the Fracture Toughness and Fatigue Performance of a Thermosetting Epoxy Polymer. J. Mater. Sci. 2011, 46, 7525–7535. DOI: 10.1007/s10853-011-5724-0.
  • Wang, Y. T.; Wang, C. S.; Yin, H. Y.; Wang, L. L.; Xie, H. F.; Cheng, R. S. (Carboxyl-Terminated Butadiene-Acrylonitrile-Toughened Epoxy/Carboxyl-Modified Carbon Nanotube Nanocomposites: Thermal and Mechanical Properties. Exp. Polym. Lett. 2012, 6, 719–728. DOI: 10.3144/expresspolymlett.2012.77.
  • Salinas-Ruiz, M. D. M.; Skordos, A. A.; Partridge, I. K. Rubber-Toughened Epoxy Loaded with Carbon Nanotubes: Structure–Property Relationships. J. Mater. Sci. 2010, 45, 2633–2639.
  • Zewde, B.; Pitliya, P.; Karim, A.; Raghavan, D. Synergistic Effect of Functionalized Carbon Nanotubes and Micron‐Sized Rubber Particles on the Mechanical Properties of Epoxy Resin. Macromol. Mater. Eng. 2016, 301, 542–548.
  • Jyotishkumar, P.; Abraham, E.; George, S. M.; Elias, E.; Pionteck, J.; Moldenaers, P.; Thomas, S. Preparation, Properties of MWCNTs/Poly(Acrylonitrile‐Styrene‐Butadiene)/Epoxy Hybrid Composites. J. Appl. Polym. Sci. 2013, 127, 3093–3103. DOI: 10.1002/app.37677.
  • Fan, X.; Zhang, G.; Li, J.; Shang, Z.; Zhang, H.; Gao, Q.; Qin, J.; Shi, X. Study on Foamability and Electromagnetic Interference Shielding Effectiveness of Supercritical CO2 Foaming Epoxy/Rubber/MWCNTs Composite. Compos. A: Appl. Sci. Manuf. 2019, 121, 64–73. DOI: 10.1016/j.compositesa.2019.03.008.
  • Gu, H.; Zhang, H.; Ma, C.; Xu, X.; Wang, Y.; Wang, Z.; Wei, R.; Liu, H.; Liu, C.; Shao, Q.; et al. Trace Electrosprayed Nanopolystyrene Facilitated Dispersion of Multiwalled Carbon Nanotubes: Simultaneously Strengthening and Toughening Epoxy. Carbon. 2019, 142, 131–140. DOI: 10.1016/j.carbon.2018.10.029.
  • De Winter, J.; Vachaudez, M.; Coulembier, O.; Dubois, P.; Flammang, R.; Gerbaux, P. Comparison of Matrix Assisted Laser Desorption/Ionization Mass Spectrometry with Electrospray Ionisation Mass Spectrometry for the Characterisation of Semitelechelic Polyethylene Oxide. e-Polymers. 2010, 10, 1–10. DOI: 10.1515/epoly.2010.10.1.1145.
  • Zhao, H.; Xia, Y. J.; Dang, Z. M.; Zha, J. W.; Hu, G. H. Composition Dependence of Dielectric Properties, Elastic Modulus, and Electroactivity in (Carbon Black‐BaTiO3)/Silicone Rubber Nanocomposites. J. Appl. Polym. Sci. 2013, 127, 4440–4445. DOI: 10.1002/app.38044.
  • Omnès, B.; Thuillier, S.; Pilvin, P.; Grohens, Y.; Gillet, S. Effective Properties of Carbon Black Filled Natural Rubber: Experiments and Modeling. Compos. A: Appl. Sci. Manuf. 2008, 39, 1141–1149. DOI: 10.1016/j.compositesa.2008.04.003.
  • Ahmadi, M.; Shojaei, A. Cure Kinetic and Network Structure of NR/SBR Composites Reinforced by Multiwalled Carbon Nanotube and Carbon Blacks. Thermochim. Acta. 2013, 566, 238–248. DOI: 10.1016/j.tca.2013.06.004.
  • Vadlamani, V. K.; Chalivendra, V. B.; Shukla, A.; Yang, S. Sensing of Damage in Carbon Nanotubes and Carbon Black‐Embedded Epoxy under Tensile Loading. Polym. Compos. 2012, 33, 1809–1815. DOI: 10.1002/pc.22326.
  • Li, Y.; Wang, S.; Zhang, Y.; Zhang, Y. Electrical Properties and Morphology of Polypropylene/Epoxy/Glass Fiber Composites Filled with Carbon Black. J. Appl. Polym. Sci. 2005, 98, 1142–1149. DOI: 10.1002/app.22105.
  • Zaimova, D.; Bayraktar, E.; Miskioglu, I. Characteristics of Elastomeric Composites Reinforced with Carbon Black and Epoxy. In Mechanics of Composite and Multi-Functional Materials, Springer: New York City, 2016; Vol. 7, pp 191–201.
  • Mukhopadhyay, S.; De, S. K. Miscibility of Self-Vulcanizable Rubber Blend Based on Epoxidized Natural Rubber and Chlorosulphonated Polyethylene: Effect of Blend Composition, Epoxy Content of Epoxidized Natural Rubber and Reinforcing Black Filler. Polymer 1991, 32, 1223–1229. DOI: 10.1016/0032-3861(91)90225-8.
  • Ali Raza, M.; Westwood, A.; Stirling, C.; Brydson, R.; Hondow, N. Effect of Nanosized Carbon Black on the Morphology, Transport, and Mechanical Properties of Rubbery Epoxy and Silicone Composites. J. Appl. Polym. Sci. 2012, 126, 641–652. DOI: 10.1002/app.36655.
  • Sarkar, P.; Bhowmick, A. K. Sustainable Rubbers and Rubber Additives. J. Appl. Polym. Sci. 2018, 135, 45701. DOI: 10.1002/app.45701.
  • Li, T.; He, S.; Stein, A.; Francis, L. F.; Bates, F. S. Synergistic Toughening of Epoxy Modified by Graphene and Block Copolymer Micelles. Macromolecules. 2016, 49, 9507–9520. DOI: 10.1021/acs.macromol.6b01964.
  • Azeez, A. A.; Rhee, K. Y.; Park, S. J.; Hui, D. Epoxy Clay Nanocomposites–Processing, Properties and Applications: A Review. Compos. B: Eng. 2013, 45, 308–320. DOI: 10.1016/j.compositesb.2012.04.012.
  • Ishigami, A.; Nishitsuji, S.; Kurose, T.; Ito, H. Evaluation of Toughness and Failure Mode of PA6/mSEBS/PS Ternary Blends with an Oil-Extended Viscoelastic Controlled Interface. Polymer 2019, 177, 57–64. DOI: 10.1016/j.polymer.2019.05.066.
  • Lee, K. Y.; Kim, K. Y.; Hwang, I. R.; Choi, Y. S.; Hong, C. H. Thermal, Tensile and Morphological Properties of Gamma-Ray Irradiated Epoxy-Clay Nanocomposites Toughened with a Liquid Rubber. Polym. Test. 2010, 29, 139–146. DOI: 10.1016/j.polymertesting.2009.10.003.
  • Jiang, T.; Kuila, T.; Kim, N. H.; Ku, B. C.; Lee, J. H. Enhanced Mechanical Properties of Silanized Silica Nanoparticle Attached Graphene Oxide/Epoxy Composites. Compos. Sci. Technol. 2013, 79, 115–125. DOI: 10.1016/j.compscitech.2013.02.018.
  • Puglia, D.; Maria, H. J.; Kenny, J. M.; Thomas, S. Clay Nanostructure and Its Localisation in an Epoxy/Liquid Rubber Blend. RSC Adv. 2013, 3, 24634–24643. DOI: 10.1039/c3ra44844d.
  • Liu, W.; Hoa, S. V.; Pugh, M. Morphology and Performance of Epoxy Nanocomposites Modified with Organoclay and Rubber. Polym. Eng. Sci. 2004, 44, 1178–1186. DOI: 10.1002/pen.20111.
  • Ahmed, M. A.; Kandil, U. F.; Shaker, N. O.; Hashem, A. I. The Overall Effect of Reactive Rubber Nanoparticles and Nano Clay on the Mechanical Properties of Epoxy Resin. J. Radiat. Res. Appl. Sci. 2015, 8, 549–561. DOI: 10.1016/j.jrras.2015.06.010.
  • Ma, J.; Yu, Z. Z.; Kuan, H. C.; Dasari, A.; Mai, Y. W. A New Strategy to Exfoliate Silicone Rubber/Clay Nanocomposites. Macromol. Rapid Commun. 2005, 26, 830–833. DOI: 10.1002/marc.200500007.
  • Bain, E. D.; Knorr, D. B.; Richardson, A. D.; Masser, K. A.; Yu, J.; Lenhart, J. L. Failure Processes Governing High-Rate Impact Resistance of Epoxy Resins Filled with Core–Shell Rubber Nanoparticles. J. Mater. Sci. 2016, 51, 2347–2370. DOI: 10.1007/s10853-015-9544-5.
  • Gao, J.; Li, J.; Benicewicz, B. C.; Zhao, S.; Hillborg, H.; Schadler, L. S. The Mechanical Properties of Epoxy Composites Filled with Rubbery Copolymer Grafted SiO2. Polymers 2012, 4, 187–210. DOI: 10.3390/polym4010187.
  • Ozdemir, N. G.; Zhang, T.; Aspin, I.; Scarpa, F.; Hadavinia, H.; Song, Y. Toughening of Carbon Fibre Reinforced Polymer Composites with Rubber Nanoparticles for Advanced Industrial Applications. Exp. Polym. Lett. 2016, 10, 394–407. DOI: 10.3144/expresspolymlett.2016.37.
  • Leelachai, K.; Kongkachuichay, P.; Dittanet, P. Toughening of Epoxy Hybrid Nanocomposites Modified with Silica Nanoparticles and Epoxidized Natural Rubber. J. Polym. Res. 2017, 24, 41. DOI: 10.1007/s10965-017-1202-y.
  • Shayegan, M.; Bagheri, R. The Simultaneous Effect of Silica Nanoparticles and Rubber Particles on the Toughness of Epoxy Polymer. IJNM. 2010, 5, 232–244. DOI: 10.1504/IJNM.2010.033865.
  • Irez, A. B.; Bayraktar, E.; Miskioglu, I. Miskioglu, I. Recycled and Devulcanized Rubber Modified Epoxy-Based Composites Reinforced with Nano-Magnetic Iron Oxide. Compos. B: Eng. 2018, 148, 1–13. DOI: 10.1016/j.compositesb.2018.04.047.
  • Salih, R. M. The Influence of Immersion in Different Chemical Solutions on the Mechanical and Physical Properties of (Epoxy/Styrene-Butadiene Rubber) Blend Reinforced with Nano Copper Oxide. Eng. Technol. J. 2018, 36, 104–109. DOI: 10.30684/etj.36.2B.2.
  • Irez, A. B.; Bayraktar, E.; Miskioglu, I. Mechanical Characterization of Epoxy–Scrap Rubber Based Composites Reinforced with Alumina Fibers. In Mechanics of Composite and Multi-Functional Materials; Springer, New York City, 2018; Vol. 6, pp 59–70.
  • Thirumalai, R.; Prakash, R.; Ragunath, R.; SenthilKumar, K. M. Experimental Investigation of Mechanical Properties of Epoxy Based Composites. Mater. Res. Exp. 2019, 6, 075309. DOI: 10.1088/2053-1591/ab10f7.
  • Gkikas, G.; Barkoula, N. M.; Paipetis, A. S. Effect of Dispersion Conditions on the Thermo-Mechanical and Toughness Properties of Multi Walled Carbon Nanotubes-Reinforced Epoxy. Compos. B: Eng. 2012, 43, 2697–2705. DOI: 10.1016/j.compositesb.2012.01.070.
  • Kim, B. C.; Park, S. W.; Lee, D. G. Fracture Toughness of the Nano-Particle Reinforced Epoxy Composite. Compos. Struct. 2008, 86, 69–77. DOI: 10.1016/j.compstruct.2008.03.005.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials – A Review of the Current Status. Nanoscale 2015, 7, 10294–10329. DOI: 10.1039/C5NR01354B.
  • Al-Ghamdi, A. A.; Al-Ghamdi, A. A.; Al-Turki, Y.; Yakuphanoglu, F.; El-Tantawy, F. Electromagnetic Shielding Properties of Graphene/Acrylonitrile Butadiene Rubber Nanocomposites for Portable and Flexible Electronic Devices. Compos. B: Eng. 2016, 88, 212–219. DOI: 10.1016/j.compositesb.2015.11.010.
  • Srivastava, V. K.; Gries, T.; Veit, D.; Quadflieg, T.; Mohr, B.; Kolloch, M. Effect of Nanomaterial on Mode I and Mode II Interlaminar Fracture Toughness of Woven Carbon Fabric Reinforced Polymer Composites. Eng. Fract. Mech. 2017, 180, 73–86. DOI: 10.1016/j.engfracmech.2017.05.030.
  • Balakrishnan, A.; Saha, M. C. Tensile Fracture and Thermal Conductivity Characterization of Toughened Epoxy/CNT Nanocomposites. Mater. Sci. Eng.: A. 2011, 528, 906–913. DOI: 10.1016/j.msea.2010.09.064.
  • Dikshit, V.; Bhudolia, S. K.; Joshi, S. C. Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement. Fibers 2017, 5, 38. DOI: 10.3390/fib5040038.
  • Ravishankar, K. S.; Kulkarni, S. M. Ballistic Impact Study on Jute-Epoxy and Natural Rubber Sandwich Composites. Mater. Today: Proc. 2018, 5, 6916–6923. DOI: 10.1016/j.matpr.2017.11.353.
  • Ferreira, L. M. P.; Bayraktar, E.; Miskioglu, I.; Robert, M. H. Design and Physical Properties of Multifunctional Structural Composites Reinforced with Nanoparticles for Aeronautical Applications. Adv. Mater. Process. Technol. 2017, 3, 33–44. DOI: 10.1080/2374068X.2016.1247243.
  • Gao, H.; Zhang, D.; Gao, L.; Ma, J. H. The Coupling Effects of Temperature, Electric Current and Stress on the Adhesion and Electrical Properties of COG Assembly. Microelectron. Reliab. 2014, 54, 1603–1612. DOI: 10.1016/j.microrel.2014.03.019.
  • Kar, S.; Banthia, A. K. Use of Acrylate‐Based Liquid Rubbers as Toughening Agents and Adhesive Property Modifiers of Epoxy Resin. J. Appl. Polym. Sci. 2004, 92, 3814–3821. DOI: 10.1002/app.20397.
  • Thomas, R.; Ronkay, F.; Czigany, T.; Cvelbac, U.; Mozetic, M.; Thomas, S. A Probe on the Failure Mechanism in Rubber-Modified Epoxy Blends: Morphological and Acoustic Emission Analysis. J. Adhes. Sci. Technol. 2011, 25, 1747–1765. DOI: 10.1163/016942410X549960.
  • Shen, B.; Li, Y.; Zhai, W.; Zheng, W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces. 2016, 8, 8050–8057. DOI: 10.1021/acsami.5b11715.
  • Tripathi, G.; Srivastava, D. Toughened Cycloaliphatic Epoxy Resin for Demanding Thermal Applications and Surface Coatings. J. Appl. Polym. Sci. 2009, 114, 2769–2776. DOI: 10.1002/app.30669.
  • Liu, X.; Wu, Y.; Yu, Z. Tribological Properties of Organic Functionalized ZrB2-Al2O3/Epoxy Composites. Tribol. Lett. 2017, 65, 14. DOI: 10.1007/s11249-016-0797-1.
  • Mylvaganam, K.; Hammer, E.; Statoil, A. S. A. Transducer for Arranging in a Fluid, Particularly for the Measurement of the Flow-Velocity of a Fluid in a Pipe, by Transmitting/Receiving Sonic Pulses. U.S. Patent 4,945,276. 1990.
  • Nakano, M.; Miyata, H.; Fujii, Y. Panasonic Intellectual Property Management Co Ltd, Ultrasonic flow meter unit with an insulating damping member covering the ultrasonic transducers, a measuring circuit and lead wires. U.S. Patent 9,541,431. 2017.
  • Yadav, R.; Awasthi, P.; Srivastava, D. Studies on Synthesis of Modified Epoxidized Novolac Resin from Renewable Resource Material for Application in Surface Coating. J. Appl. Polym. Sci. 2009, 114, 1471–1484. DOI: 10.1002/app.30581.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.