212
Views
7
CrossRef citations to date
0
Altmetric
Articles

Nanocomposites of epoxidized soybean oil (ESO)-based epoxy (DGEBA) blends and clay platelets: cured with methylhexahydrophthalic anhydride crosslinker

, &
Pages 654-662 | Received 21 Dec 2019, Accepted 05 Apr 2020, Published online: 27 Apr 2020

References

  • Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Recent Development of Biobased Epoxy Resins: A Review. Polym. Plast. Technol. Eng. 2018, 57, 133–155. DOI: 10.1080/03602559.2016.1253742.
  • Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Epoxidized Soybean Oil-Based Epoxy Blend Cured with Anhydride-Based Cross-Linker: Thermal and Mechanical Characterization. Indus. Eng. Chem. Res. 2017, 56, 687–698.
  • Kumar, S.; Krishnan, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Toughening of Petroleum Based (DGEBA) Epoxy Resins with Various Renewable Resources Based Flexible Chains for High Performance Applications: A Review. Indus. Eng. Chem. Res. 2018, 57, 2711–2726. DOI: 10.1021/acs.iecr.7b04495.
  • Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S. K. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: A Review. Polym. Int. 2018, 67, 815–839. DOI: 10.1002/pi.5575.
  • Sahoo, S. K.; Mohanty, S.; Nayak, S. K. Toughened Bio-Based Epoxy Blend Network Modified with Transesterified Epoxidized Soybean Oil: synthesis and Characterization. RSC Adv. 2015, 5, 13674–13691. DOI: 10.1039/C4RA11965G.
  • Sahoo, S. K.; Mohanty, S.; Nayak, S. K. Synthesis and Characterization of Bio-Based Epoxy Blends from Renewable Resource Based Epoxidized Soybean Oil as Reactive Diluent. Chin. J. Polym. Sci. 2015, 33, 137–152. DOI: 10.1007/s10118-015-1568-4.
  • Park, S. J.; Jin, F. L.; Lee, J. R. Effect of Biodegradable Epoxidized Castor Oil on Physicochemical and Mechanical Properties of Epoxy Resins. Macromol. Chem. Phys. 2004, 205, 2048–2054. DOI: 10.1002/macp.200400214.
  • Saikia, A.; Karak, N. Castor Oil Based Epoxy/Clay Nanocomposite for Advanced Applications. Am. J. Eng. Appl. Sci. 2016, 9, 31–40. DOI: 10.3844/ajeassp.2016.31.40.
  • Sahoo, S. K.; Khandelwal, V.; Manik, G. A Renewable Approach to Synthesize Highly Toughened Bio-Epoxy from Castor Oil Derivative-Epoxy Methyl Ricinoleate and Cured with Bio-Renewable Phenalkamine. Indus. Eng. Chem. Res. 2018, 57, 11323–11334. DOI: 10.1021/acs.iecr.8b02043.
  • Sahoo, S. K.; Khandelwal, V.; Manik, G. Development of Toughened Bio‐Based Epoxy with Epoxidized Linseed Oil as Reactive Diluent and Cured with Bio‐Renewable Crosslinker. Polym. Adv. Technol. 2018, 29, 565–574. DOI: 10.1002/pat.4166.
  • Miyagawa, H.; Mohanty, A. K.; Misra, M.; Drzal, L. T. Thermo‐Physical and Impact Properties of Epoxy Containing Epoxidized Linseed Oil. Macromol. Mater. Eng. 2004, 289, 629–635. DOI: 10.1002/mame.200400004.
  • Pin, J. M.; Sbirrazzuoli, N.; Mija, A. From Epoxidized Linseed Oil to Bioresin: An Overall Approach of Epoxy/Anhydride Cross‐Linking. ChemSusChem 2015, 8, 1232–1243. DOI: 10.1002/cssc.201403262.
  • Tan, S. G.; Chow, W. S. Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends. Polym. Plast. Technol. Eng. 2010, 49, 900–907. DOI: 10.1080/03602551003682042.
  • Sarwono, A.; Man, Z.; Bustam, M. A. Blending of Epoxidised Palm Oil with Epoxy Resin: The Effect on Morphology, Thermal and Mechanical Properties. J. Polym. Environ. 2012, 20, 540–549. DOI: 10.1007/s10924-012-0418-5.
  • Tan, S.; Chow, W. Thermal Properties of Anhydride-Cured Bio-Based Epoxy Blends. J. Therm. Anal. Calorim. 2010, 101, 1051–1058. DOI: 10.1007/s10973-010-0751-7.
  • Unnikrishnan, K. P.; Thachil, E. T. Studies on the Modification of Commercial Epoxy Resin Using Cardanol-Based Phenolic Resins. J. Elastom. Plast. 2008, 40, 271–286. DOI: 10.1177/0095244307086712.
  • Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustain. Chem. Eng. 2015, 3, 3281–3290. DOI: 10.1021/acssuschemeng.5b00871.
  • Boruah, M.; Gogoi, P.; Adhikari, B.; Dolui, S. K. Preparation and Characterization of Jatropha Curcas Oil Based Alkyd Resin Suitable for Surface Coating. Prog. Org. Coat. 2012, 74, 596–602. DOI: 10.1016/j.porgcoat.2012.02.007.
  • Kumar, S.; Samal, S. K.; Mohanty, S.; Nayak, S. K. Curing Kinetics of Bio-Based Epoxy Resin-Toughened DGEBA Epoxy Resin Blend. J. Therm. Anal. Calorim. 2019, 137, 1567–1578. DOI: 10.1007/s10973-019-08080-4.
  • Liu, Z. S.; Erhan, S. Z.; Calvert, P. D. Solid Freeform Fabrication of Epoxidized Soybean Oil/Epoxy Composites with Di‐, Tri‐, and Polyethylene Amine Curing Agents. J. Appl. Polym. Sci. 2004, 93, 356–363. DOI: 10.1002/app.20412.
  • Shabeer, A.; Sundararaman, S.; Chandrashekhara, K.; Dharani, L. R. Physicochemical Properties and Fracture Behavior of Soy‐Based Resin. J. Appl. Polym. Sci. 2007, 105, 656–663. DOI: 10.1002/app.26322.
  • Ma, P. C.; Kim, J. K.; Tang, B. Z. Effects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites. Compos. Sci. Technol. 2007, 67, 2965–2972. DOI: 10.1016/j.compscitech.2007.05.006.
  • Allaoui, A.; Bai, S.; Cheng, H. M.; Bai, J. B. Mechanical and Electrical Properties of a MWNT/Epoxy Composite. Compos. Sci. Technol. 2002, 62, 1993–1998. DOI: 10.1016/S0266-3538(02)00129-X.
  • Chung, S. K.; Wie, J. J.; Park, B. Y.; Kim, S. C. Synthesis of Reactive Organifier for the Epoxy/Layered Silicate Nanocomposite and the Properties of the Epoxy Nanocomposites. J. Macromol. Sci. Part A 2008, 46, 205–214. DOI: 10.1080/10601320802595185.
  • Salam, H.; Dong, Y. Property Evaluation and Material Characterization of Soybean Oil Modified Bioepoxy/Clay Nanocomposites for Environmental Sustainability. Mater. Today Sustain. 2019, 5, 100012. DOI: 10.1016/j.mtsust.2019.100012.
  • Chandrasekaran, S.; Sato, N.; Tolle, F.; Mülhaupt, R.; Fiedler, B.; Schulte, K. Fracture Toughness and Failure Mechanism of Graphene Based Epoxy Composites. Compos. Sci. Technol. 2014, 97, 90–99.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. Improving the Fracture Toughness and the Strength of Epoxy Using Nanomaterials: A Review of the Current Status. Nanoscale 2015, 7, 10294–10329. DOI: 10.1039/C5NR01354B.
  • Wang, R.; Schuman, T.; Vuppalapati, R. R.; Chandrashekhara, K. Fabrication of Bio-Based Epoxy–Clay Nanocomposites. Green Chem. 2014, 16, 1871–1882. DOI: 10.1039/C3GC41802B.
  • Salahuddin, N. A. Layered Silicate/Epoxy Nanocomposites: Synthesis, Characterization and Properties. Polym. Adv. Technol. 2004, 15, 251–259. DOI: 10.1002/pat.382.
  • Wang, K.; Chen, L.; Wu, J.; Toh, M. L.; He, C.; Yee, A. F. Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms. Macromolecules 2005, 38, 788–800. DOI: 10.1021/ma048465n.
  • Kiliaris, P.; Papaspyrides, C. D. Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy. Review Article Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. Prog. Polym. Sci. 2010, 35, 902–958. DOI: 10.1016/j.progpolymsci.2010.03.001.
  • Salvetat, J.-P.; Briggs, G.; Bonard, J.-M.; Bacsa, R.; Kulik, A.; Stöckli, T.; Burnham, N.; Forró, L. Review Article Polymer–Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. Phys. Rev. Lett. 1999, 82, 944–947.
  • Pissis, P. Thermoset Nanocomposites for Engineering Applications; iSmithers Rapra Publishing Ltd: UK, 2007.
  • Miyagawa, H.; Misra, M.; Drzal, L. T.; Mohanty, A. K. Fracture Toughness and Impact Strength of Anhydride‐Cured Biobased Epoxy. Polym. Eng. Sci. 2005, 45, 487–495. DOI: 10.1002/pen.20290.
  • Shokrieh, M. M.; Kefayati, A. R.; Chitsazzadeh, M. Fabrication and Mechanical Properties of Clay/Epoxy Nanocomposite and its Polymer Concrete. Mater. Des 2012, 40, 443–452. DOI: 10.1016/j.matdes.2012.03.008.
  • Nguyen, Q. T.; Baird, D. G. Preparation of Polymer–Clay Nanocomposites and Their Properties. Adv. Polym. Technol. 2006, 25, 270–285. DOI: 10.1002/adv.20079.
  • Miyagawa, H.; Mohanty, A. K.; Drzal, L. T.; Misra, M. Nanocomposites from Biobased Epoxy and Single-Wall Carbon Nanotubes: synthesis, and Mechanical and Thermophysical Properties Evaluation. Nanotechnology 2005, 16, 118–124. DOI: 10.1088/0957-4484/16/1/024.
  • Das, G.; Karak, N. Vegetable Oil-Based Flame Retardant Epoxy/Clay Nanocomposites. Polym. Degrad. Stabil. 2009, 94, 1948–1954. DOI: 10.1016/j.polymdegradstab.2009.07.028.
  • Bhuyan, S.; Sundararajan, S.; Lu, Y.; Larock, R. C. A Study of the Physical and Tribological Properties of Biobased Polymer–Clay Nanocomposites at Different Clay Concentrations. Wear 2010, 268, 797–802. DOI: 10.1016/j.wear.2009.12.021.
  • Dodiuk, H. Goodman, S. H. (Eds.). Handbook of Thermoset Plastics; William Andrew Publisher: USA, 2013.
  • Wang, R.; Schuman, T. P. Vegetable Oil-Derived Epoxy Monomers and Polymer Blends: A Comparative Study with Review. Express Polym. Lett. 2013, 7, 272–292. DOI: 10.3144/expresspolymlett.2013.25.
  • Liu, Z.; Erhan, S. Z.; Akin, D. E.; Barton, F. E. Green Composites from Renewable Resources: preparation of Epoxidized Soybean Oil and Flax Fiber Composites. J. Agric. Food Chem. 2006, 54, 2134–2137. DOI: 10.1021/jf0526745.
  • Liu, Z.; Erhan, S. Z.; Xu, J. Preparation, Characterization and Mechanical Properties of Epoxidized Soybean Oil/Clay Nanocomposites. Polymer 2005, 46, 10119–10127. DOI: 10.1016/j.polymer.2005.08.065.
  • Tsujimoto, T.; Uyama, H.; Kobayashi, S. Synthesis of High-Performance Green Nanocomposites from Renewable Natural Oils. Polym. Degrad. Stabil. 2010, 95, 1399–1405. DOI: 10.1016/j.polymdegradstab.2010.01.016.
  • Lakshmi, M. S.; Narmadha, B.; Reddy, B. S. R. Enhanced Thermal Stability and Structural Characteristics of Different MMT-Clay/Epoxy-Nanocomposite Materials. Polym. Degrad. Stabil. 2008, 93, 201–213. DOI: 10.1016/j.polymdegradstab.2007.10.005.
  • Zhang, J.; Hu, S.; Zhan, G.; Tang, X.; Yu, Y. Biobased Nanocomposites from Clay Modified Blend of Epoxidized Soybean Oil and Cyanate Ester Resin. Prog. Org. Coat. 2013, 76, 1683–1690. DOI: 10.1016/j.porgcoat.2013.07.017.
  • Tan, S. G.; Ahmad, Z.; Chow, W. S. Interpenetrating Polymer Network Structured Thermosets Prepared from Epoxidized Soybean Oil/Diglycidyl Ether of Bisphenol A. Polym. Int. 2014, 63, 273–279. DOI: 10.1002/pi.4501.
  • Wang, R.; Schuman, T.; Vuppalapati, R. R.; Chandrashekhara, K. Fabrication of Bio-Based Epoxy–Clay Nanocomposites. Green Chem. Green Chem. 2014, 16, 1871–1882. DOI: 10.1039/C3GC41802B.
  • Chen, R. S.; Ahmad, S.; Gan, S. Characterization of Recycled Thermoplastics-Based Nanocomposites: Polymer–Clay Compatibility, Blending Procedure, Processing Condition, and Clay Content Effects. Compos. Part B: Eng. 2017, 131, 91–99. DOI: 10.1016/j.compositesb.2017.07.057.
  • Sahoo, S. K.; Mohanty, S.; Nayak, S. K. Study of Thermal Stability and Thermo-Mechanical Behavior of Functionalized Soybean Oil Modified Toughened Epoxy/Organo Clay Nanocomposite. Prog. Org. Coat. 2015, 88, 263–271. DOI: 10.1016/j.porgcoat.2015.07.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.