245
Views
8
CrossRef citations to date
0
Altmetric
Articles

Sulfonic-functionalized graphene oxide reinforced polyethersulfone nanocomposites with enhanced dielectric permittivity and EMI shielding effectiveness 

, , &
Pages 778-790 | Received 17 Jan 2020, Accepted 31 May 2020, Published online: 23 Jun 2020

References

  • Dang, Z. M.; Yuan, J. K.; Zha, J. W.; Zhou, T.; Li, S. T.; Hu, G. H. Fundamentals, Processes and Applications of High-Permittivity Polymer–Matrix Composites. Prog. Mater. Sci. 2012, 57, 660–723. DOI: 10.1016/j.pmatsci.2011.08.001.
  • Li, Y.; Huang, X.; Zeng, L.; Li, R.; Tian, H.; Fu, X.; Wang, Y.; Zhong, W.-H. A Review of the Electrical and Mechanical Properties of Carbon Nanofiller-Reinforced Polymer Composites. J. Mater. Sci. 2019, 54, 1036–1076. DOI: 10.1007/s10853-018-3006-9.
  • Harito, C.; Bavykin, D. V.; Yuliarto, B.; Dipojono, H. K.; Walsh, F. C. Polymer Nanocomposites Having a High Filler Content: Synthesis, Structures, Properties, and Applications. Nanoscale 2019, 11, 4653–4682. DOI: 10.1039/C9NR00117D.
  • Sadhukhan, S.; Bhattacharyya, A.; Rana, D.; Ghosh, T. K.; Orasugh, J. T.; Khatua, S.; Acharya, K.; Chattopadhyay, D. Synthesis of RGO/NiO Nanocomposites Adopting a Green Approach and Its Photocatalytic and Antibacterial Properties. Mater. Chem. Phys. 2020, 247, 122906. DOI: 10.1016/j.matchemphys.2020.122906.
  • Biswas, A.; Patra, A. K.; Sarkar, S.; Das, D.; Chattopadhyay, D.; De, S. Synthesis of Highly Magnetic Iron Oxide Nanomaterials from Waste Iron by One-Step Approach. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124420. DOI: 10.1016/j.colsurfa.2020.124420.
  • Sadhukhan, S.; Ghosh, T. K.; Roy, I.; Rana, D.; Bhattacharyya, A.; Saha, R.; Chattopadhyay, S.; Khatua, S.; Acharya, K.; Chattopadhyay, D. Green Synthesis of Cadmium Oxide Decorated Reduced Graphene Oxide Nanocomposites and Its Electrical and Antibacterial Properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 696–709. DOI: 10.1016/j.msec.2019.01.128.
  • Bhattacharyya, A.; Banerjee, B.; Ghorai, S.; Rana, D.; Roy, I.; Sarkar, G.; Saha, N. R.; De, S.; Ghosh, T. K.; Sadhukhan, S.; Chattopadhyay, D. Development of an Auto-Phase Separable and Reusable Graphene Oxide-Potato Starch Based Cross-Linked Bio-Composite Adsorbent for Removal of Methylene Blue Dye. Int. J. Biol. Macromol. 2018, 116, 1037–1048. DOI: 10.1016/j.ijbiomac.2018.05.069.
  • Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. DOI: 10.1016/j.pmatsci.2017.07.004.
  • Yang, Z.; Tian, J.; Yin, Z.; Cui, C.; Qian, W.; Wei, F. Carbon Nanotube- and Graphene-Based Nanomaterials and Applications in High-Voltage Supercapacitor: A Review. Carbon 2019, 141, 467–480. DOI: 10.1016/j.carbon.2018.10.010.
  • Zabihi, O.; Ahmadi, M.; Li, Q.; Shafei, S.; Huson, M. G.; Naebe, M. Carbon Fibre Surface Modification Using Functionalized Nanoclay: A Hierarchical Interphase for Fibre-Reinforced Polymer Composites. Compos. Mater. Sci. 2017, 148, 49–58. DOI: 10.1016/j.compscitech.2017.05.013.
  • Ma, L.; Zhu, Y.; Feng, P.; Song, G.; Huang, Y.; Liu, H.; Zhang, J.; Fan, J.; Hou, H.; Guo, Z. Reinforcing Carbon Fiber Epoxy Composites with Triazine Derivatives Functionalized Graphene Oxide Modified Sizing Agent. Compos. Part B 2019, 176, 107078. DOI: 10.1016/j.compositesb.2019.107078.
  • Hofmann, D.; Thomann, R.; Mülhaupt, R. Thermoplastic SEBS Elastomer Nanocomposites Reinforced with Functionalized Graphene Dispersions. Macromol. Mater. Eng. 2018, 303, 1700324. DOI: 10.1002/mame.201700324.
  • Yao, H.; Zhou, G.; Wang, W.; Peng, M. Effect of Polymer-Grafted Carbon Nanofibers and Nanotubes on the Interlaminar Shear Strength and Flexural Strength of Carbon Fiber/Epoxy Multiscale Composites. Compos. Struct. 2018, 195, 288–296. DOI: 10.1016/j.compstruct.2018.04.082.
  • Hiremath, N.; Evora, M. C.; Naskar, A. K.; Mays, J.; Bhat, G. Polyacrylonitrile Nanocomposite Fibers from Acrylonitrile-Grafted Carbon Nanofibers. Compos. Part B 2017, 130, 64–69. DOI: 10.1016/j.compositesb.2017.07.031.
  • Zhao, Y.; Cabrera, E. D.; Zhang, D.; Sun, J.; Kuang, T.; Yang, W.; Lertola, M. J.; Benatar, A.; Castro, J. M.; Lee, L. J. Ultrasonic Processing of MWCNT Nanopaper Reinforced Polymeric Nanocomposites. Polymer 2018, 156, 85–94. DOI: 10.1016/j.polymer.2018.09.053.
  • Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X. Mechanical Properties of Epoxy Composites Filled with Silane-Functionalized Graphene Oxide. Compos. Part A Appl. Sci. Manuf. 2014, 64, 79–89. DOI: 10.1016/j.compositesa.2014.04.023.
  • Bian, J.; Wang, Z. J.; Lin, H. L.; Zhou, X.; Xiao, W. Q.; Zhao, X. W. Thermal and Mechanical Properties of Polypropylene Nanocomposites Reinforced with nano-SiO2 Functionalized Graphene Oxide. Compos. Part A Appl. Sci. Manuf. 2017, 97, 120–127. DOI: 10.1016/j.compositesa.2017.01.002.
  • Singer, G.; Sinn, G.; Rennhofer, H.; Schuller, R.; Grünewald, T. A.; Unterlass, M. M.; Windberger, U.; Lichtenegger, H. C. High Performance Functional Composites by in-Situ Orientation of Carbon Nanofillers. Compos. Struct. 2019, 215, 178–184. DOI: 10.1016/j.compstruct.2019.02.020.
  • Kumar, S. M. S.; Subramanian, K. Enhancement in Mechanical, Thermal, and Dielectric Properties of Functionalized Graphene Oxide Reinforced Epoxy Composites. Adv. Polym. Technol. 2016, 37, 612–621. DOI: 10.1002/adv.21702.
  • Lopes, M. C.; Ribeiro, H.; Santos, M. C. G.; Seara, L. M.; Ferreira, F. L. Q.; Lavall, R. L.; Silva, G. G. High Performance Polyurethane Composites with Isocyanate‐Functionalized Carbon Nanotubes: Improvements in Tear Strength and Scratch Hardness. J. Appl. Polym. Sci. 2017, 134, 44394. DOI: 10.1002/app.44394.
  • Vicentini, N.; Gatti, T.; Salerno, M.; Gomez, Y. S. H.; Bellon, M.; Gallio, S.; Marega, C.; Filippini, F.; Menna, E. Effect of Different Functionalized Carbon Nanostructures as Fillers on the Physical Properties of Biocompatible Poly(l-Lactic Acid) Composites. Mater. Chem. Phys. 2018, 214, 265–276. DOI: 10.1016/j.matchemphys.2018.04.042.
  • de Menezes, B. R. C.; Ferreira, F. V.; Silva, B. C.; Simonetti, E. A. N.; Bastos, T. M.; Cividanes, L. S.; Thim, G. P. Effects of Octadecylamine Functionalization of Carbon Nanotubes on Dispersion, Polarity, and Mechanical Properties of CNT/HDPE Nanocomposites. J. Mater. Sci. 2018, 53, 14311–14327. DOI: 10.1007/s10853-018-2627-3.
  • Lei, L.; Shan, J.; Hu, J.; Liu, X.; Zhao, J.; Tong, Z. Co-Curing Effect of Imidazole Grafting Graphene Oxide Synthesized by One-Pot Method to Reinforce Epoxy Nanocomposites. Compos. Sci. Technol. 2016, 128, 161–168. DOI: 10.1016/j.compscitech.2016.03.029.
  • Nam, K.-H.; Yu, J.; You, N.-H.; Han, H.; Ku, B.-C. Synergistic Toughening of Polymer Nanocomposites by Hydrogen-Bond Assisted Three-Dimensional Network of Functionalized Graphene Oxide and Carbon Nanotubes. Compos. Sci. Technol. 2017, 149, 228–234. DOI: 10.1016/j.compscitech.2017.06.025.
  • Cha, J.; Kim, J.; Ryu, S.; Hong, S. H. Comparison to Mechanical Properties of Epoxy Nanocomposites Reinforced by Functionalized Carbon Nanotubes and Graphene Nanoplatelets. Compos. Part B 2019, 162, 283–288. DOI: 10.1016/j.compositesb.2018.11.011.
  • Ferreira, F. V.; Franceschi, W.; Menezes, B. R. C.; Brito, F. S.; Lozano, K.; Coutinho, A. R.; Cividanes, L. S.; Thim, G. P. Dodecylamine Functionalization of Carbon Nanotubes to Improve Dispersion, Thermal and Mechanical Properties of Polyethylene Based Nanocomposites. Appl. Surf. Sci. 2017, 410, 267–277. DOI: 10.1016/j.apsusc.2017.03.098.
  • Li, Q.; Xue, Q.; Hao, L.; Gao, X.; Zheng, Q. Large Dielectric Constant of the Chemically Functionalized Carbon Nanotube/Polymer Composites. Compos. Sci. Technol. 2008, 68, 2290–2296. DOI: 10.1016/j.compscitech.2008.04.019.
  • Wang, D.; Bao, Y.; Zha, J.-W.; Zhao, J.; Dang, Z.-M.; Hu, G.-H. Improved Dielectric Properties of Nanocomposites Based on Poly(Vinylidene Fluoride) and Poly(Vinyl Alcohol)-Functionalized Graphene. ACS Appl. Mater. Interfaces 2012, 4, 6273–6279. DOI: 10.1021/am3018652.
  • Wang, J.; Jin, X.; Zhang, X.; Xia, L.; Li, C.; Wu, H.; Guo, S. Achieving High-Performance Poly(Styrene-b-Ethylene-Ranbutylene-b-Styrene) Nanocomposites with Tannic Acid Functionalized Graphene Oxide. Compos. Sci. Technol. 2018, 158, 137–146. DOI: 10.1016/j.compscitech.2018.02.004.
  • Manna, R.; Srivastava, S. K. Fabrication of Functionalized Graphene Filled Carboxylated Nitrile Rubber Nanocomposites as Flexible Dielectric Materials. Mater. Chem. Front. 2017, 1, 780–788. DOI: 10.1039/C6QM00025H.
  • Kou, W. J.; Qian, J.; Chen, X. X.; Liu, Q.; Zhuang, Q. X. Effect of NH2-Functionalized Carbon Nanospheres on the Performances of Poly(p-Phenylene Benzobisoxazole)/Carbon Nanospheres Nanocomposite Films. J. Mater. Sci. Mater. Electron. 2019, 30, 7567–7576. DOI: 10.1007/s10854-019-01071-z.
  • Li, M.; Liu, J.; Zheng, D.; Zheng, M.; Zhao, Y.; Hu, M.; Yue, G. H.; Shan, G. Enhanced Dielectric Permittivity and Suppressed Electrical Conductivity in Polyvinylidene Fluoride Nanocomposites Filled with 4,4’-Oxydiphenol-Functionalized Graphene. Nanotechnology 2019, 30, 265705. DOI: 10.1088/1361-6528/ab0a50.
  • Abbas, N.; Kim, H. T. Multi-Walled Carbon Nanotube/Polyethersulfone Nanocomposites for Enhanced Electrical Conductivity, Dielectric Properties and Efficient Electromagnetic Interference Shielding at Low Thickness. Macromol. Res. 2016, 24, 1084–1090. DOI: 10.1007/s13233-016-4152-z.
  • Zhao, X.; Ran, F.; Shen, K.; Yang, Y.; Wu, J.; Niu, X.; Kong, L.; Kang, L.; Chen, S. Facile Fabrication of Ultrathin Hybrid Membrane for Highly Flexible Supercapacitors via In-Situ Phase Separation of Polyethersulfone. J. Power Sources 2016, 329, 104–114. DOI: 10.1016/j.jpowsour.2016.08.047.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339. DOI: 10.1021/ja01539a017.
  • Mo, Z.; Sun, Y.; Chen, H.; Zhang, P.; Zuo, D.; Liu, Y.; Li, H. Preparation and Characterization of a PMMA/Ce(OH)3, Pr2O3/Graphite Nanosheet Composite. Polymer 2005, 46, 12670–12676. DOI: 10.1016/j.polymer.2005.10.117.
  • Kumar, R.; Isloor, A. M.; Ismail, A. F.; Rashid, S. A.; Matsuura, T. Polysulfone–Chitosan Blend Ultrafiltration Membranes: Preparation, Characterization, Permeation and Antifouling Properties. RSC Adv. 2013, 3, 7855–7861. DOI: 10.1039/c3ra00070b.
  • Neelakandan, S.; Jacob, K. N.; Kanagaraj, P.; Sabarathinam, R. M.; Muthumeenal, A.; Nagendran, A. Effect of Sulfonated Graphene Oxide on the Performance Enhancement of Acid–Base Composite Membranes for Direct Methanol Fuel Cells. RSC Adv. 2016, 6, 51599–51608. DOI: 10.1039/C5RA27655A.
  • Zhao, L.; Li, Y.; Zhang, H.; Wu, W.; Liu, J.; Wang, J. Constructing Proton-Conductive Highways within an Ionomer Membrane by Embedding Sulfonated Polymer Brush Modified Graphene Oxide. J. Power Sources 2015, 286, 445–457. DOI: 10.1016/j.jpowsour.2015.04.005.
  • Zarrin, H.; Higgins, D.; Jun, Y.; Chen, Z.; Fowler, M. Functionalized Graphene Oxide Nanocomposite Membrane for Low Humidity and High Temperature Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2011, 115, 20774–20781. DOI: 10.1021/jp204610j.
  • Kar, A.; Kundu, S.; Patra, A. Photocatalytic Properties of Semiconductor SnO2/CdS Heterostructure Nanocrystals. RSC Adv. 2012, 2, 10222–10230. DOI: 10.1039/c2ra21065g.
  • Yeo, J.-S.; Yun, J.-M.; Jung, Y.-S.; Kim, D.-Y.; Noh, Y.-J.; Kim, S.-S.; Na, S.-I. Sulfonic Acid-Functionalized, Reduced Graphene Oxide as an Advanced Interfacial Material Leading to Donor Polymer-Independent High-Performance Polymer Solar Cells. J. Mater. Chem. A 2014, 2, 292–298. DOI: 10.1039/C3TA13647G.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Zhu, S.; Shi, M.; Zhao, S.; Wang, Z.; Wang, J.; Wang, S. Preparation and Characterization of a Polyethersulfone/Polyaniline Nanocomposite Membrane for Ultrafiltration and as a Substrate for a Gas Separation Membrane. RSC Adv. 2015, 5, 27211–27223. DOI: 10.1039/C4RA16951D.
  • Wei, X.; Wang, Z.; Wang, J.; Wang, S. A Novel Method of Surface Modification to Polysulfone Ultrafiltration Membrane by Preadsorption of Citric Acid or Sodium Bisulfate. Membr. Water Treat. 2012, 3, 35–49. DOI: 10.12989/mwt.2012.3.1.035.
  • Verma, S. K.; Kumar, M.; Kar, P.; Choudhury, A. Core–Shell Functionalized MWCNT/Poly(m‐Aminophenol) Nanocomposite with Large Dielectric Permittivity and Low Dielectric Loss. Polym. Adv. Technol. 2016, 27, 1596–1603. DOI: 10.1002/pat.3836.
  • Zhang, S.; Wang, H.; Wang, G.; Jiang, Z. Material with High Dielectric Constant, Low Dielectric Loss, and Good Mechanical and Thermal Properties Produced Using Multi-Wall Carbon Nanotubes Wrapped with Poly(Ether Sulphone) in a Poly(Ether Ether Ketone) Matrix. Appl. Phys. Lett. 2012, 101, 012904. DOI: 10.1063/1.4733723.
  • Zakiyan, S. E.; Azizi, H.; Ghasemi, I. Influence of Chain Mobility on Rheological, Dielectric and Electromagnetic Interference Shielding Properties of Poly Methyl-Methacrylate Composites Filled with Graphene and Carbon Nanotube. Compos. Sci. Technol. 2017, 142, 10–19. DOI: 10.1016/j.compscitech.2017.01.025.
  • Ahmad, M. W.; Dey, B.; Sarkhel, G.; Bag, D. S.; Choudhury, A. Exfoliated Graphene Reinforced Polybenzimidazole Nanocomposites with High Dielectric Permittivity at Low Percolation Threshold. J. Molecul. Struct. 2019, 1177, 491–498. DOI: 10.1016/j.molstruc.2018.10.009.
  • Shah, S. S. A.; Nasir, H.; Saboor, A. Improved Dielectric Properties of Polyetherimide and Polyaniline-Coated Few-Layer Graphene Based Nanocomposites. J. Mater. Sci. Mater. Electron. 2018, 29, 402–411. DOI: 10.1007/s10854-017-7929-8.
  • Liao, X.; Ye, W.; Chen, L.; Jiang, S.; Wang, G.; Zhang, L.; Hou, H. Flexible hdC-G Reinforced Polyimide Composites with High Dielectric Permittivity. Compos. A Appl. Sci. Manuf. 2017, 101, 50–58. DOI: 10.1016/j.compositesa.2017.06.011.
  • Marashdeh, W.; Iroh, J. O. Electrical Properties of Flexible Graphene Reinforced Polyimide Composites. J. Appl. Polym. Sci. 2017, 134, 45372–45377. DOI: 10.1002/app.45372.
  • Wu, C.; Huang, X.; Wang, G.; Wu, X.; Yang, K.; Li, S.; Jiang, P. Hyperbranched-Polymer Functionalization of Graphene Sheets for Enhanced Mechanical and Dielectric Properties of Polyurethane Composites. J. Mater. Chem. 2012, 22, 7010–7019. DOI: 10.1039/c2jm16901k.
  • Zhan, Y.; Yang, J.; Zhou, Y.; Yang, X.; Meng, F.; Liu, X. Nitrile Functionalized Graphene for Poly(Arylene Ether Nitrile) Nanocomposite Films with Enhanced Dielectric Permittivity. Mater. Lett. 2012, 78, 88–91. DOI: 10.1016/j.matlet.2012.03.029.
  • Pethrick, R. A.; Hayward, D. Real Time Dielectric Relaxation Studies of Dynamic Polymeric Systems. Prog. Polym. Sci. 2002, 27, 1983–2017. DOI: 10.1016/S0079-6700(02)00027-8.
  • Li, Y.; Cordovez, M.; Karbhari, V. M. Dielectric and Mechanical Characterization of Processing and Moisture Uptake Effects in E-Glass/Epoxy Composites. Compos. Part B 2003, 34, 383–390. DOI: 10.1016/S1359-8368(02)00133-6.
  • Zhang, J.; Mine, M.; Zhu, D.; Matsuo, M. Electrical and Dielectric Behaviors and Their Origins in the Three-Dimensional Polyvinyl Alcohol/MWCNT Composites with Low Percolation Threshold. Carbon 2009, 47, 1311–1320. DOI: 10.1016/j.carbon.2009.01.014.
  • Yuan, J. K.; Yao, S. H.; Dang, Z. M.; Sylvestre, A.; Genestoux, M.; Bai, J. B. Giant Dielectric Permittivity Nanocomposites: Realizing True Potential of Pristine Carbon Nanotubes in Polyvinylidene Fluoride Matrix through an Enhanced Interfacial Interaction. J. Phys. Chem. C 2011, 115, 5515–5521. DOI: 10.1021/jp1117163.
  • Wang, H.; Wang, G.; Li, W.; Wang, Q.; Wei, W.; Jiang, Z.; Zhang, S. A Material with High Electromagnetic Radiation Shielding Effectiveness Fabricated Using Multi-Walled Carbon Nanotubes Wrapped with Poly(Ether Sulfone) in a Poly(Ether Ether Ketone) Matrix. J. Mater. Chem. 2012, 22, 21232–21237. DOI: 10.1039/c2jm35129c.
  • Farrokhnia, M.; Rashidzadeh, M.; Safekordi, A.; Khanbabaei, G. Fabrication and Evaluation of Nanocomposite Membranes of Polyethersulfone/α-Alumina for Hydrogen Separation. Iran. Polym. J. 2015, 24, 171–183. DOI: 10.1007/s13726-015-0308-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.