759
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of quercetin-encapsulated alginate beads with their antioxidant and release kinetic studies

, & ORCID Icon
Pages 22-31 | Received 19 Jul 2020, Accepted 22 Aug 2020, Published online: 15 Sep 2020

References

  • Jakobek, L. Interactions of Polyphenols with Carbohydrates, Lipids and Proteins. Food Chem. 2015, 175, 556–567. DOI: 10.1016/j.foodchem.2014.12.013.
  • Li, X.; Liu, B. O.; Wang, X.; Han, Y.; Su, H.; Zeng, X.; Sun, R. Synthesis, Characterization and Antioxidant Activity of Quaternized Carboxymethyl Chitosan Oligosaccharides. J. Macromol. Sci. A 2012, 49, 861–868. DOI: 10.1080/10601325.2012.714679.
  • Topal, F.; Nar, M.; Gocer, H.; Kalin, P.; Kocyigit, U. M.; Gülçin, İ.; Alwasel, S. H. Antioxidant Activity of Taxifolin: An activity-structure relationship. J. Enzyme. Inhib. Med. Chem. 2016, 31, 674–683. DOI: 10.3109/14756366.2015.1057723.
  • Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 09–950. DOI: 10.1152/physrev.00026.2013.
  • Rafiq, R. A.; Quadri, A.; Nazir, L. A.; Peerzada, K.; Ganai, B. A.; Tasduq, S. A. A Potent Inhibitor of Phosphoinositide 3-Kinase (PI3K) and Mitogen Activated Protein (MAP) Kinase Signalling, Quercetin (3, 3', 4', 5, 7-Pentahydroxyflavone) Promotes Cell Death in Ultraviolet (UV)-B-Irradiated B16F10 Melanoma Cells. PLoS One. 2015, 10, e0131253DOI: 10.1371/journal.pone.0131253.
  • Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. Radical-Scavenging and anti-Inflammatory Activity of Quercetin and Related Compounds and Their Combinations against RAW264. 7 Cells Stimulated with porphyromonas gingivalis Fimbriae. Relationships between anti-Inflammatory Activity and Quantum Chemical Parameters. In Vivo 2015, 29, 701–710.
  • Zheng, Y. Z.; Deng, G.; Liang, Q.; Chen, D. F.; Guo, R.; Lai, R. C. Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci. Rep. 2017, 7, 1–11. DOI: 10.1038/s41598-017-08024-8.
  • Arai, Y.; Endo, S.; Miyagi, N.; Abe, N.; Miura, T.; Nishinaka, T.; Terada, T.; Oyama, M.; Goda, H.; El-Kabbani, O.; et al. Structure-activity relationship of flavonoids as potent inhibitors of carbonyl reductase 1 (CBR1). ). Fitoterapia 2015, 101, 51–56. DOI: 10.1016/j.fitote.2014.12.010.
  • Huang, H.; Zhang, C.; Liu, L.; Wang, Z. Synthesis and Characterization of a Novel Quercetin Magnetic Molecularly Imprinted Polymer via Reversible Addition Fragmentation Chain Transfer Strategy. J. Macromol. Sci. A 2017, 54, 446–451. DOI: 10.1080/10601325.2017.1320748.
  • Breen, M. E.; Soellner, M. B. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: approaches and Challenges. ACS Chem. Biol. 2015, 10, 175–189. DOI: 10.1021/cb5008376.
  • Johnson, R.; Halder, G. The Two Faces of Hippo: targeting the Hippo Pathway for Regenerative Medicine and Cancer Treatment. Nat Rev Drug Discov. 2014, 13, 63–79. DOI: 10.1038/nrd4161.
  • Fertah, M.; Belfkira, A.; Dahmane, E. m.; Taourirte, M.; Brouillette, F. Extraction and Characterization of Sodium Alginate from Moroccan Laminaria Digitata Brown Seaweed. Arab. J. Chem 2017, 10, S3707–S3714. DOI: 10.1016/j.arabjc.2014.05.003.
  • Asti, A.; Gioglio, L. Natural and Synthetic Biodegradable Polymers: different Scaffolds for Cell Expansion and Tissue Formation. Int. J. Artif. Organs. 2014, 37, 187–205. DOI: 10.530/ijao.5000307.
  • Bajpai, S. K.; Tankhiwale, R. A Novel Approach for Testing the Hixon‐Crowel Model for in Vitro Release of Vitamin B2 from Chitosan Coated Calcium Alginate Beads. J. Macromol. Sci. A 2006, 43, 621–626. DOI: 10.1080/10601320600591139.
  • Nalamothu, N.; Potluri, A.; Muppalla, M. B. Review on Marine Alginates and Its Applications. J. Pharmacol. Res. 2014, 4, 4006–4015.
  • Ching, S. H.; Bansal, N.; Bhandari, B. Alginate Gel particles-A review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. DOI: 10.1080/10408398.2014.965773.
  • Thombre, A. G.; Wu, X. Y.; Ende, M. T. Controlled Release Technology and Design of Oral Controlled Release Dosage Forms. In Chemical Engineering in the Pharmaceutical Industry: Drug Product Design, Development, and Modeling; John Wiley & Sons: Hoboken, NJ, 2019; pp 381–407. DOI: 10.1002/9781119600800.ch65.
  • Lawal, M. V. Modified Starches as Direct Compression Excipients–Effect of Physical and Chemical Modifications on Tablet Properties: A Review. Starch‐Stärke 2019, 71, 1800040. DOI: 10.1002/star.201800040.
  • Pongjanyakul, T.; Rongthong, T. Enhanced Entrapment Efficiency and Modulated Drug Release of Alginate Beads Loaded with Drug–Clay Intercalated Complexes as Microreservoirs. Carbohydr. Polym 2010, 81, 409–419. DOI: 10.1016/j.carbpol.2010.02.038.
  • Murawski, A.; Diaz, R.; Inglesby, S.; Delabar, K.; Quirino, R. L. Synthesis of Bio-Based Polymer Composites: Fabrication, Fillers, Properties, and Challenges. In Polymer Nanocomposites in Biomedical Engineering; Springer International Publishing: Berlin, Germany, 2019; pp 29–55. DOI: 10.1007/978-3-030-04741-2.2.
  • Abedini, F.; Ebrahimi, M.; Roozbehani, A. H.; Domb, A. J.; Hosseinkhani, H. Overview on Natural Hydrophilic Polysaccharide Polymers in Drug Delivery. Polym. Adv. Technol. 2018, 29, 2564–2573. DOI: 10.1002/pat.4375.
  • Danks, A. E.; Hall, S. R.; Schnepp, Z. The Evolution of ‘Sol–Gel’chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. DOI: 10.1039/C5MH00260E.
  • Soukoulis, C.; Cambier, S.; Hoffmann, L.; Bohn, T. Stability and Bioaccessibility of β-Carotene Encapsulated in Sodium Alginate o/w Emulsions: Impact of Ca2+ Mediated Gelation. Food Hydrocoll 2016, 57, 301–310. DOI: 10.1016/j.foodhyd.2016.02.001.
  • Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. DOI: 10.1021/acs.biomac.6b00378.
  • Kumar, S.; Chauhan, N.; Gopal, M.; Kumar, R.; Dilbaghi, N. Development and Evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int. J. Biol. Macromol. 2015, 81, 631–637. DOI: 10.1016/j.ijbiomac.2015.08.062.
  • Yang, J.; Zhu, Y.; Xu, T.; Pan, C.; Cai, N.; Huang, H.; Zhang, L. The Preservation of Living Cells with Biocompatible Microparticles. Nanotechnology 2016, 27, 265101DOI: 10.1088/0957-4484/27/26/265101.
  • Mane, S.; Ponrathnam, S.; Chavan, N. Effect of Chemical Cross-Linking on Properties of Polymer Microbeads: A Review. Can. Chem. Trans 2015, 3, 473–485. DOI: 10.13179/canchemtrans.2015.03.04.0245.
  • Luo, Y.; Wang, Q. Recent Development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery . Int. J. Biol. Macromol. 2014, 64, 353–367. DOI: 10.1016/j.ijbiomac.2013.12.017.
  • Adebiyi, O. E.; Olayemi, F. O.; Ning-Hua, T.; Guang-Zhi, Z. In Vitro Antioxidant Activity, Total Phenolic and Flavonoid Contents of Ethanol Extract of Stem and Leaf of Grewia Carpinifolia. BENI-SEUF UNIV. J. Appl. Sci. 2017, 6, 10–14. DOI: 10.1016/j.bjbas.2016.12.003.
  • Qi, Y.; Jiang, M.; Cui, Y. L.; Zhao, L.; Zhou, X. Synthesis of Quercetin Loaded Nanoparticles Based on Alginate for Pb (II) Adsorption in Aqueous Solution. Nanoscale Res. Let. 2015, 10, 1–9. DOI: 10.1186/s11671-015-1117-7.
  • Gulati, N.; Nagaich, U.; Sharma, V. K.; R. L. Effect Of, K. Polymer and Cross Linking Agent on in Vitro Release of Quercetin from Microbeads. Asian J. Pharm ISSN 2011, 2231, 4423.
  • Cadena-Velandia, Z. G.; Montenegro-Alarcón, J. C.; Marquínez-Casas, X.; Mora-Huertas, C. E. Quercetin-Loaded Alginate Microparticles: A Contribution on the Particle Structure. J Drug Deliv Sci Technol. 2020, 56, 101558. DOI: 10.1016/j.jddst.2020.101558.
  • Mandal, S.; Kumar, S. S.; Krishnamoorthy, B.; Basu, S. K. Development and Evaluation of Calcium Alginate Beads Prepared by Sequential and Simultaneous Methods. Braz. J. Pharm. Sci. 2010, 46, 785–793. DOI: 10.1590/S1984-82502010000400021.
  • Lima, A. C.; Batista, P.; Valente, T. A.; Silva, A. S.; Correia, I. J.; Mano, J. F. Novel Methodology Based on Biomimetic Superhydrophobic Substrates to Immobilize Cells and Proteins in Hydrogel Spheres for Applications in Bone Regeneration. Tissue Eng Part A 2013, 19, 1175–1187. DOI: 10.1089/ten.tea.2012.0249.
  • Memic, A.; Colombani, T.; Eggermont, L. J.; Rezaeeyazdi, M.; Steingold, J.; Rogers, Z. J.; Navare, K. J.; Mohammed, H. S.; Bencherif, S. A. Latest Advances in Cryogel Technology for Biomedical Applications. Adv. Therap. 2019, 2, 1800114. DOI: 10.1002/adtp.201800114.
  • Hamano, Y.; Tsujimura, S.; Shirai, O.; Kano, K. Control of the Pore Size Distribution of Carbon Cryogels by pH Adjustment of Catalyst Solutions. Mater. Lett 2014, 128, 191–194. DOI: 10.1016/j.matlet.2014.04.125.
  • Huang, S. L.; Lin, Y. S. The Size Stability of Alginate Beads by Different Ionic Crosslinkers. Adv. Mater. Sci. Eng. 2017, 2017, 1–7. DOI: 10.1155/2017/9304592.
  • Daemi, H.; Barikani, M. Synthesis and Characterization of Calcium Alginate Nanoparticles, Sodium Homopolymannuronate Salt and Its Calcium Nanoparticles. Sci Iran. 2012, 19, 2023–2028. DOI: 10.1016/j.scient.2012.10.005.
  • Roy, A.; Bajpai, A. K.; Bajpai, J. Designing Swellable Beads of Alginate and Gelatin for Controlled Release of Pesticide (Cypermethrin). J. Macromol. Sci. A 2009, 46, 847–859. DOI: 10.1080/10601320903077976.
  • Yadav, R.; Devi, A.; Tripathi, G.; Srivastava, D. Optimization of the Process Variables for the Synthesis of Cardanol-Based Novolac-Type Phenolic Resin Using Response Surface Methodology. Eur. Polym. J. 2007, 43, 3531–3537. DOI: 10.1016/j.eurpolymj.2007.05.033.
  • Wang, M.; Yuan, Z.; Cheng, S.; Leitch, M.; Xu, C. C. Synthesis of Novolac-Type Phenolic Resins Using Glucose as the Substitute for Formaldehyde. J. Appl. Polym. Sci. 2010, 118, n/a–1197. DOI: 10.1002/app.32240.
  • Şahin, İ.; Özbakır, Y.; Inönü, Z.; Ulker, Z.; Erkey, C. Kinetics of Supercritical Drying of Gels. Gels 2017, 4, 3. DOI: 10.3390/gels4010003.
  • Segale, L.; Giovannelli, L.; Mannina, P.; Pattarino, F. Calcium Alginate and Calcium Alginate-Chitosan Beads Containing Celecoxib Solubilized in a Self-Emulsifying Phase. Scientifica 2016, 2016, 1–8. DOI: 10.1155/2016/5062706.
  • Birbara, P. J. Methods of Increasing Solubility of Poorly Soluble Compounds and Methods of Making and Using Formulations of Such Compounds. API Genesis LLC. U.S. Patent 2014, 8, 637–569.
  • Srimathi Priyanga, K.; Vijayalakshmi, K. Investigation of Antioxidant Potential of Quercetin and Hesperidin: An in Vitro Approach. Asian J. Pharm. Clin. Res. 2017, 10, 83–86. DOI: 10.22159/ajpcr.2017.v10i11.20260.
  • Nishimura, F.; de, C. Y.; de Almeida, A. C.; Ratti, B. A.; Ueda-Nakamura, T.; Nakamura, C. V.; Ximenes, V. F.; Silva, S. D. O. Antioxidant Effects of Quercetin and Naringenin Are Associated with Impaired Neutrophil Microbicidal Activity. Evid. Based Complementary Altern. Med. 2013, 2013, 1–7. DOI: 10.1155/2013/795916.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.